首页 > 分享 > 线性代数

线性代数

行列式

行列式概念的引进

先来看一个方程组:

a 11 x 1 + a 12 x 2 = b 1 , a 21 x 1 + a 22 x 2 = b 2 a_{11}x_1 + a_{12}x_2 = b_1, \a_{21}x_1 +a_{22}x_2=b_2 a11​x1​+a12​x2​=b1​,a21​x1​+a22​x2​=b2​

假设此方程组有解.即: a 11 a 22 − a 12 a 21 ≠ 0. a_{11}a_{22}-a_{12}a_{21} neq 0. a11​a22​−a12​a21​​=0.求 x 1 和 x 2 x_1和x_2 x1​和x2​

一般会用高斯消元法求解.第一个方程乘上 a 22 a_{22} a22​,第二个方程乘上 a 12 a_{12} a12​, 两个方程相减,消掉 x 2 x_2 x2​得到 x 1 x_1 x1​的表达式.

x 1 = a 22 b 1 − a 12 b 2 a 11 a 2 2 − a 12 a 21 x_1 = frac{a_{22}b_1 - a_{12}b_2}{a_{11}a_22-a_{12}a_{21}} x1​=a11​a2​2−a12​a21​a22​b1​−a12​b2​​

同理可得:

x 2 = a 11 b 2 − a 21 b 1 a 11 a 2 2 − a 12 a 21 x_2 = frac{a_{11}b_2 - a_{21}b_1}{a_{11}a_22-a_{12}a_{21}} x2​=a11​a2​2−a12​a21​a11​b2​−a21​b1​​

能否 10秒内把上面两个公式记住?

为了记忆, 我们引进记号

约 定 ∣ a 11 a 12 a 12 a 22 ∣ = a 11 a 2 2 − a 12 a 21 , 这 个 式 子 就 叫 做 行 列 式 约定 left|

a11a12a12a22" role="presentation">a11a12a12a22

right| = a_{11}a_22-a_{12}a_{21},这个式子就叫做行列式 约定∣∣∣∣​a11​a12​a12​a22​​∣∣∣∣​=a11​a2​2−a12​a21​,这个式子就叫做行列式

行列式其实就是速记的符号,上面的行列式是二阶行列式.

这样 x 1 , x 2 x_1, x_2 x1​,x2​就有了新的表达式

x 1 = ∣ b 1 a 12 b 2 a 22 ∣ ∣ a 11 a 12 a 12 a 22 ∣ , x 2 = ∣ a 11 b 1 a 21 b 2 ∣ ∣ a 11 a 12 a 12 a 22 ∣ x_1 = frac {left|

b1a12b2a22" role="presentation">b1a12b2a22

right|}{left|

a11a12a12a22" role="presentation">a11a12a12a22

right|}, quad x_2= frac{left|

a11b1a21b2" role="presentation">a11b1a21b2

right|}{left|

a11a12a12a22" role="presentation">a11a12a12a22

right|} x1​=∣∣∣∣​a11​a12​a12​a22​​∣∣∣∣​∣∣∣∣​b1​a12​b2​a22​​∣∣∣∣​​,x2​=∣∣∣∣​a11​a12​a12​a22​​∣∣∣∣​∣∣∣∣​a11​b1​a21​b2​​∣∣∣∣​​

再来看一下三阶行列式:

a 11 x 1 + a 12 x 2 + a 13 x 3 = b 1 , a 21 x 1 + a 22 x 2 + a 23 x 3 = b 2 , a 31 x 1 + a 32 x 2 + a 33 x 3 = b 3. a_{11}x_1 +a_{12}x_2 + a_{13}x_3=b_1, \a_{21}x_1+a_{22}x_2+a_{23}x_3=b2,\a_{31}x_1 + a_{32}x_2 +a_{33}x_3=b3. a11​x1​+a12​x2​+a13​x3​=b1​,a21​x1​+a22​x2​+a23​x3​=b2,a31​x1​+a32​x2​+a33​x3​=b3.

使 用 高 斯 消 元 法 得 到 x 1 , x 2 , x 3 的 分 母 为 a 11 a 22 a 33 + a 12 a 23 a 31 + a 13 a 21 a 32 − a 13 a 22 a 31 − a 11 a 23 a 32 − a 12 a 21 a 33 使用高斯消元法得到x_1, x_2, x_3的分母为a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} 使用高斯消元法得到x1​,x2​,x3​的分母为a11​a22​a33​+a12​a23​a31​+a13​a21​a32​−a13​a22​a31​−a11​a23​a32​−a12​a21​a33​

我们定义以下式子为三阶行列式.

∣ a 11 a 12 a 13 a 12 a 22 a 23 a 31 a 32 a 33 ∣ = a 11 a 22 a 33 + a 12 a 23 a 31 + a 13 a 21 a 32 − a 13 a 22 a 31 − a 11 a 23 a 32 − a 12 a 21 a 33 left|

a11a12a13a12a22a23a31a32a33" role="presentation">a11a12a13a12a22a23a31a32a33

right| = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} ∣∣∣∣∣∣​a11​a12​a13​a12​a22​a23​a31​a32​a33​​∣∣∣∣∣∣​=a11​a22​a33​+a12​a23​a31​+a13​a21​a32​−a13​a22​a31​−a11​a23​a32​−a12​a21​a33​

练习计算以下矩阵的行列式的值:

∣ 1 4 3 − 5 2 1 3 6 1 ∣ left|

143−521361" role="presentation">143−521361

right| ∣∣∣∣∣∣​143−521361​∣∣∣∣∣∣​

∣ 1 0 0 − 5 2 3 3 3 5 ∣ left|

100−523335" role="presentation">100−523335

right| ∣∣∣∣∣∣​100−523335​∣∣∣∣∣∣​

n阶行列式

D = ∣ a 11 a 12 a 13 a 12 a 22 a 23 a 31 a 32 a 33 ∣ = a 11 a 22 a 33 + a 12 a 23 a 31 + a 13 a 21 a 32 − a 13 a 22 a 31 − a 11 a 23 a 32 − a 12 a 21 a 33 D=left|

a11a12a13a12a22a23a31a32a33" role="presentation">a11a12a13a12a22a23a31a32a33

right| = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} D=∣∣∣∣∣∣​a11​a12​a13​a12​a22​a23​a31​a32​a33​​∣∣∣∣∣∣​=a11​a22​a33​+a12​a23​a31​+a13​a21​a32​−a13​a22​a31​−a11​a23​a32​−a12​a21​a33​

= a 11 ( a 22 a 33 − a 23 a 32 ) + a 12 ( a 23 a 31 − a 21 a 33 ) + a 13 ( a 21 a 32 − a 22 a 31 ) =a_{11}(a_{22}a_{33} - a_{23}a_{32}) +a_{12}(a_{23}a_{31} - a_{21}a_{33}) + a_{13}(a_{21}a_{32} - a_{22}a_{31}) =a11​(a22​a33​−a23​a32​)+a12​(a23​a31​−a21​a33​)+a13​(a21​a32​−a22​a31​)

= a 11 ∣ a 22 a 23 a 32 a 33 ∣ − a 12 ∣ a 21 a 23 a 31 a 33 ∣ + a 13 ∣ a 21 a 22 a 31 a 32 ∣ =a_{11}left|

a22a23a32a33" role="presentation">a22a23a32a33

right| - a_{12}left|

a21a23a31a33" role="presentation">a21a23a31a33

right| + a_{13}left|

a21a22a31a32" role="presentation">a21a22a31a32

right| =a11​∣∣∣∣​a22​a23​a32​a33​​∣∣∣∣​−a12​∣∣∣∣​a21​a23​a31​a33​​∣∣∣∣​+a13​∣∣∣∣​a21​a22​a31​a32​​∣∣∣∣​

= a 11 ( − 1 ) 1 + 1 ∣ a 22 a 23 a 32 a 33 ∣ + a 12 ( − 1 ) 1 + 2 ∣ a 21 a 23 a 31 a 33 ∣ + a 13 ( − 1 ) 1 + 3 ∣ a 21 a 22 a 31 a 32 ∣ =a_{11}(-1)^{1+1}left|

a22a23a32a33" role="presentation">a22a23a32a33

right| + a_{12}(-1)^{1+2}left|

a21a23a31a33" role="presentation">a21a23a31a33

right| + a_{13}(-1)^{1 + 3}left|

a21a22a31a32" role="presentation">a21a22a31a32

right| =a11​(−1)1+1∣∣∣∣​a22​a23​a32​a33​​∣∣∣∣​+a12​(−1)1+2∣∣∣∣​a21​a23​a31​a33​​∣∣∣∣​+a13​(−1)1+3∣∣∣∣​a21​a22​a31​a32​​∣∣∣∣​

记 A 11 = ( − 1 ) 1 + 1 ∣ a 22 a 23 a 32 a 33 ∣ , A 12 = ( − 1 ) 1 + 2 ∣ a 21 a 23 a 31 a 33 ∣ , A 13 = ( − 1 ) 1 + 3 ∣ a 21 a 22 a 31 a 32 ∣ A_{11} = (-1)^{1+1}left|

a22a23a32a33" role="presentation">a22a23a32a33

right|, A_{12}=(-1)^{1+2}left|

a21a23a31a33" role="presentation">a21a23a31a33

right|, A_{13}=(-1)^{1 + 3}left|

a21a22a31a32" role="presentation">a21a22a31a32

right| A11​=(−1)1+1∣∣∣∣​a22​a23​a32​a33​​∣∣∣∣​,A12​=(−1)1+2∣∣∣∣​a21​a23​a31​a33​​∣∣∣∣​,A13​=(−1)1+3∣∣∣∣​a21​a22​a31​a32​​∣∣∣∣​

D = a 11 A 11 + a 12 A 12 + a 13 A 13 D = a_{11}A_{11} +a_{12}A_{12} + a_{13}A_{13} D=a11​A11​+a12​A12​+a13​A13​

类似地有 D = a i 1 A i 1 + a i 2 A i 2 + a i 3 A i 3 , i = 1 , 2 , 3 D = a_{i1}A_{i1} +a_{i2}A_{i2} + a_{i3}A_{i3}, i=1,2,3 D=ai1​Ai1​+ai2​Ai2​+ai3​Ai3​,i=1,2,3

或 D = a 1 j A 1 j + a 2 j A 2 j + a 3 j A 3 j , j = 1 , 2 , 3 D = a_{1j}A_{1j} +a_{2j}A_{2j} + a_{3j}A_{3j}, j=1,2,3 D=a1j​A1j​+a2j​A2j​+a3j​A3j​,j=1,2,3

A i j 称 为 元 素 a i j 的 代 数 余 子 式 A_{ij}称为元素a_{ij}的代数余子式 Aij​称为元素aij​的代数余子式

相关知识

教师网络培训心得(精选20篇)
中国农业大学动物营养与饲料科学2024年考研备考攻略
哈罗重庆学子专访牛津大学计算机科学教授亚历克斯·罗杰斯:人类应该如何处理与人工智能的关系?

网址: 线性代数 https://m.mcbbbk.com/newsview161027.html

所属分类:萌宠日常
上一篇: np.unique(ar, re
下一篇: @Transactional(r