首页 > 分享 > 【深度学习图像识别课程】毕业项目:狗狗种类识别(4)代码实现

【深度学习图像识别课程】毕业项目:狗狗种类识别(4)代码实现

本博文涉及以下:六

目录:

Zero:导入数据集

一、检测人脸

二、检测狗狗

三、从头实现CNN实现狗狗分类

四、迁移VGG16实现狗狗分类

五、迁移ResNet_50实现狗狗分类

六、自己实现狗狗分类

六、自己实现狗狗分类整体流程

实现一个算法,它的输入为图像的路径,它能够区分图像是否包含一个人、狗或两者都不包含,然后:

如果从图像中检测到一只,返回被预测的品种。如果从图像中检测到,返回最相像的狗品种。如果两者都不能在图像中检测到,输出错误提示。

可以自己编写检测图像中人类与狗的函数,可以随意使用已经完成的 face_detector 和 dog_detector 函数。使用在步骤5的CNN来预测狗品种。

下面提供了算法的示例输出,也可以自由地设计模型!

Sample Human Output

1、加载数据集

from sklearn.datasets import load_files

from keras.utils import np_utils

import numpy as np

from glob import glob

def load_dataset(path):

data = load_files(path)

dog_files = np.array(data['filenames'])

dog_targets = np_utils.to_categorical(np.array(data['target']), 133)

return dog_files, dog_targets

train_files, train_targets = load_dataset('dogImages/train')

valid_files, valid_targets = load_dataset('dogImages/valid')

test_files, test_targets = load_dataset('dogImages/test')

dog_names = [item[20:-1] for item in sorted(glob("dogImages/train/*/"))]

print('There are %d total dog categories.' % len(dog_names))

print('There are %s total dog images.n' % len(np.hstack([train_files, valid_files, test_files])))

print('There are %d training dog images.' % len(train_files))

print('There are %d validation dog images.' % len(valid_files))

print('There are %d test dog images.'% len(test_files))

2、检测是否有狗狗

from keras.applications.resnet50 import ResNet50

ResNet50_model = ResNet50(weights='imagenet')

from keras.preprocessing import image

from tqdm import tqdm

def path_to_tensor(img_path):

img = image.load_img(img_path, target_size=(224, 224))

x = image.img_to_array(img)

return np.expand_dims(x, axis=0)

def paths_to_tensor(img_paths):

list_of_tensors = [path_to_tensor(img_path) for img_path in tqdm(img_paths)]

return np.vstack(list_of_tensors)

from keras.applications.resnet50 import preprocess_input, decode_predictions

def ResNet50_predict_labels(img_path):

img = preprocess_input(path_to_tensor(img_path))

return np.argmax(ResNet50_model.predict(img))

def dog_detector(img_path):

prediction = ResNet50_predict_labels(img_path)

return ((prediction <= 268) & (prediction >= 151))

3、检测是否有人

import cv2

import matplotlib.pyplot as plt

%matplotlib inline

face_cascade = cv2.CascadeClassifier('haarcascades/haarcascade_frontalface_alt.xml')

def face_detector(img_path):

img = cv2.imread(img_path)

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

faces = face_cascade.detectMultiScale(gray)

return len(faces) > 0

4、得到bottleneck特征:ResNet50

bottleneck_features = np.load('bottleneck_features/DogResnet50Data.npz')

train_Resnet50 = bottleneck_features['train']

valid_Resnet50 = bottleneck_features['valid']

test_Resnet50 = bottleneck_features['test']

5、模型建立、编译、训练和测试

from keras.layers import Conv2D, MaxPooling2D, GlobalAveragePooling2D

from keras.layers import Dropout, Flatten, Dense

from keras.models import Sequential

Resnet50_model = Sequential()

Resnet50_model.add(GlobalAveragePooling2D(input_shape=train_Resnet50.shape[1:]))

Resnet50_model.add(Dense(133, activation='softmax'))

Resnet50_model.summary()

Resnet50_model.compile(loss='categorical_crossentropy', optimizer='rmsprop', metrics=['accuracy'])

from keras.callbacks import ModelCheckpoint

checkpointer = ModelCheckpoint(filepath='saved_models/weights.best.Resnet50.hdf5',

verbose=1, save_best_only=True)

Resnet50_model.fit(train_Resnet50, train_targets,

validation_data=(valid_Resnet50, valid_targets),

epochs=20, batch_size=20, callbacks=[checkpointer], verbose=1)

Resnet50_model.load_weights('saved_models/weights.best.Resnet50.hdf5')

Resnet50_predictions = [np.argmax(Resnet50_model.predict(np.expand_dims(feature, axis=0))) for feature in test_Resnet50]

test_accuracy = 100*np.sum(np.array(Resnet50_predictions)==np.argmax(test_targets, axis=1))/len(Resnet50_predictions)

print('Test accuracy: %.4f%%' % test_accuracy)

 6、测试新图片

from extract_bottleneck_features import *

def Resnet50_predict_breed(img_path):

bottleneck_feature = extract_Resnet50(path_to_tensor(img_path))

predicted_vector = Resnet50_model.predict(bottleneck_feature)

return dog_names[np.argmax(predicted_vector)]

def LastPredict(img_path):

img = cv2.imread(img_path)

cv_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

plt.imshow(cv_rgb)

plt.show()

if face_detector(img_path) > 0:

print("Hello, Human")

print("You look like a ... in dog world")

print(Resnet50_predict_breed(img_path))

elif dog_detector(img_path) == True:

print("Hello, Dog")

print("You are a ... ")

print(Resnet50_predict_breed(img_path))

else:

print("Error Input")

(1)6张狗狗:只有第一张被误判为人类,但是检测的相似狗狗对了。另外5张没有错误。

(2)5张人的图片:5张没有误判的。另外,我像Poodle。

(3)3张猫咪:第二张错误,被误判为人类。其他2张正确。

相关知识

【深度学习图像识别课程】毕业项目:狗狗种类识别(4)代码实现
探索AIDog:智能狗狗识别与行为理解的开源项目
深度学习卷积神经图像分类实现鸟类识别含训练代码和鸟类数据集(支持repVGG,googlenet, resnet, inception, mobilenet)
基于深度学习的鸟类识别系统(网页版+YOLOv8/v7/v6/v5代码+训练数据集)
详解pytorch实现猫狗识别98%附代码
毕业设计:基于深度学习的动物叫声识别系统
PyTorch深度学习:猫狗情感识别
PyTorch猫狗:深度学习在宠物识别中的应用
R语言深度学习玩转宠物世界:宠物识别与品种分类
鸟类声音识别技术综述:从传统方法到深度学习

网址: 【深度学习图像识别课程】毕业项目:狗狗种类识别(4)代码实现 https://m.mcbbbk.com/newsview273644.html

所属分类:萌宠日常
上一篇: 宠物领养馆赚钱攻略:宠物用品、护
下一篇: 小宠物的互动设施在这里