摘要: 植物叶片是连接植物与外界环境的重要桥梁,其功能性状变化受外界环境和系统发育的共同影响。充分了解不同环境下叶片功能性状的变化对探讨植物对环境的适应性具有重要意义。本文阐述了叶片功能性状的类型及其功能意义,综述了影响叶片功能性状2个主要因素(环境因子和系统发育历史)的相关研究,探讨了叶片功能性状对植物适应环境的意义。最后,对叶片功能性状研究的现状及未来趋势进行了展望。
Abstract: Plant leaves represent an important interface between a plant and the surrounding environment, and their functional traits are influenced by the external environment and phylogeny. Elucidating variations in leaf functional traits in different environments is crucial to understand plant adaptation. In this paper, the types and functional significance of the functional traits of leaves are summarized. Related studies on the two main factors affecting the functional traits of leaves (environmental factors and phylogenetic history), as well as involvement in plant adaptation, are also discussed. Finally, we propose prospective research directions based on the current situation and future tendency of leaf functional trait studies.
[1]Guittar J, Goldberg D, Klanderud K, Telford RJ, Vandvik V. Can trait patterns along gradients predict plant community responses to climate change?[J]. Ecology, 2016, 97:2791-2801.
[2]Cornelissen JHC, Lavorel S, Garnier E, Diaz S, Buchmann N, Pausas, JG. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide[J]. Aust J Bot, 2003, 51(4):335-380.
[3]Zirbel CR, Bassett T, Grman E, Brudvig LA. Plant functional traits and environmental conditions shape community assembly and ecosystem functioning during restoration[J]. J Appl Ecol, 2017, 54(4):1070-1079.
[4]Xu F, Guo W, Xu W, Wei Y, Wang R. Leaf morphology correlates with water and light availability:what consequences for simple and compound leaves?[J]. Prog Nat Sci, 2009, 19(2):1789-1798.
[5]Rodriguez RE, Debernardi JM, Palatnik JF. Morphogenesis of simple leaves:regulation of leaf size and shape[J]. Wiley Interdiscip Rev Dev Biol, 2014, 3(1):41-57.
[6]Peppe DJ, Royer DL, Cariglino B, Oliver SY, Correa E. Sensitivity of leaf size and shape to climate:global patterns and paleoclimatic applications[J]. New Phytol, 2011, 190(3):724-739.
[7]Su T, Xing Y, Liu Y, Jacques FMB, Chen W, et al. Leaf margin analysis:a new equation from humid to mesic forests in China[J]. Palaios, 2010, 25(4):234-238.
[8]Jacques FMB, Guo S, Su T, Xing Y, Huang Y, et al. Quantitative reconstruction of the late Miocene monsoon climates of southwest China:a case study of the Lincang flora from Yunnan province[J]. Palaeogeogr Palaeocl, 2011, 304(3):318-327.
[9]Su T, Jacques FMB, Spicer RA, Liu Y, Huang Y, et al. Post-Pliocene establishment of the present monsoonal climate in SW China:evidence from the late Pliocene Longmen megaflora[J]. Clim Past, 2013, 9(2):1675-1701.
[10]Royer DL, Miller IM, Peppe DJ, Hickey LJ. Leaf economic traits from fossils support a weedy habit for early angiosperms[J]. Am J Bot, 2010, 97(3):438-445.
[11]McKown AD, Dengler NG. Shifts in leaf vein density through accelerated vein formation in C4Flaveria (Astera-ceae)[J]. Ann Bot, 2009, 104(6):1085-1098.
[12]Sack L, Scoffoni C, John GP, Poorter H, Mason CM, et al. How do leaf veins influence the worldwide leaf econo-mic spectrum? Review and synthesis[J]. J Exp Bot, 2013, 64(13):4053-4080.
[13]Roth-Nebelsick A, Uhl D, Mosbrugger V, Kerp H. Evolution and function of leaf venation architecture:a review[J]. Ann Bot, 2001, 87(5):553-566.
[14]Sack L, Scoffoni C, McKown AD, Frole K, Rawls M, et al. Developmentally based scaling of leaf venation architecture explains global ecological patterns[J]. Nat Commun, 2012, 3(837):1-10.
[15]Blonder B, Baldwin BG, Enquist BJ, Robichaux RH, Lau J. Variation and macroevolution in leaf functional traits in the Hawaiian silversword alliance (Asteraceae)[J]. J Ecol, 2016, 104(1):219-228.
[16]Raven JA, Beardall J. The ins and outs of CO2[J]. J Exp Bot, 2016, 67(1):1-13.
[17]Hetherington AM, Woodward FI. The role of stomata in sensing and driving environmental change[J]. Nature, 2003, 42(6591):901-908.
[18]Franks PJ, Beerling DJ. Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time[J]. Proc Natl Acad Sci USA, 2009, 106(25):10343-10347.
[19]Bertolde F, Talon M, Navarro L, Ollitrault P, Gesteira A, Morillon R. Evaluation of the impact of the polyploidy on plant gas exchanges and the expression of genes involved in stomata size and density[EB/OL].[2017-05-05]. http://agritrop.cirad.fr/583566/, 2016.
[20]Onoda Y, Richards L, Westoby M. The importance of leaf cuticle for carbon economy and mechanical strength[J]. New Phytol, 2012, 196(2):441-447.
[21]Watkins Jr JE, Cardelús CL. Ferns in an angiosperm world:cretaceous radiation into the epiphytic niche and diversification on the forest floor[J]. Int J Plant Sci, 2012, 173(6):695-710.
[22]Wright IJ, Reich PB, Westoby M, Ackerly DD, Flexas J, et al. The worldwide leaf economics spectrum[J]. Nature, 2004, 428(6985):821-827.
[23]Enrique G, Olmo M, Poorter H, Ubera JL, Villar R. Leaf mass per area (LMA) and its relationship with leaf structure and anatomy in 34 Mediterranean woody species along a water availability gradient[J]. PLoS One, 2016, 11:e0148788.
[24]Bjorkman AD, Elmendorf SC, Beamish AL, Vellend M, Henry GH. Contrasting effects of warming and increased snowfall on Arctic tundra plant phenology over the past two decades[J]. Glob Change Biol, 2015, 21:4651-4661.
[25]Sack L, Cowan PD, Jaikumar N, Holbrook NM. The ‘hydrology’ of leaves:co-ordination of structure and function in temperate woody species[J]. Plant Cell Envorn, 2003, 26(8):1343-1356.
[26]Zhang YJ, Sack L, Cao KF, Wei XM, Li N. Speed versus endurance tradeoff in plants:leaves with higher photosynthetic rates show stronger seasonal declines[J]. Sci Rep, 2017, 7:42085.
[27]Hagedorn F, Shiyatov SG, Mazepa VS, Devi NM, Grigor'ev AA, et al. Treeline advances along the Urals mountain range-driven by improved winter conditions?[J]. Glob Change Biol, 2014, 20:3530-3543.
[28]Dunbar-Co S, Sporck MJ, Sack L. Leaf trait diversification and design in seven rare taxa of the Hawaiian Plantago radiation[J]. Int J Plant Sci, 2009, 170(1):61-75.
[29]Baldissera TC, Frak E, Carvalho PC, Louarn G. Plant development controls leaf area expansion in alfalfa plants competing for light[J]. Ann Bot, 2014, 113(1):145-157.
[30]Coble A, Fogel M, Parker G. Canopy gradients in leaf functional traits for species that differ in growth strategies and shade tolerance[J]. Tree Physiol, 2017, 37(10):1415-1425.
[31]Nicotra AB, Cosgrove MJ, Cowling A, Schlichting CD, Jones CS. Leaf shape linked to photosynthetic rates and temperature optima in South African Pelargonium species[J]. Oecologia, 2008, 154(4):625-635.
[32]Costa DS, Classen A, Ferger S, Helbig-Bonitz M, Peters M, et al. Relationships between abiotic environment, plant functional traits, and animal body size at Mount Kilimanjaro, Tanzania[J]. PLoS One, 2017, 12:e0174157.
[33]Hudson JMG, Henry GHR, Cornwell WK. Taller and larger:shifts in Arctic tundra leaf traits after 16 years of experimental warming[J]. Glob Chang Biol, 2011, 17(2):1013-1021.
[34]Li F, Bao W. Elevational trends in leaf size of Campylotropis polyantha in the arid Minjiang River valley, SW China[J]. J Arid Environ, 2014, 108:1-9.
[35]Wang R, Huang W, Chen L, Ma L, Guo C, Liu X. Anatomical and physiological plasticity in Leymus chinensis (Poaceae) along large-scale longitudinal gradient in northeast China[J]. PLoS One, 2011, 6(11):e26209.
[36]Zhu Y, Kang H, Xie Q, Wang Z, Yin S, Liu C. Pattern of leaf vein density and climate relationship of Quercus variabilis populations remains unchanged with environmental changes[J]. Trees, 2012, 26(2):597-607.
[37]Xu Z, Zhou G. Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass[J]. J Exp Bot, 2008, 59(12):3317-3325.
[38]Kouwenberg LLR, Kurschner WM, McElwain JC. Stomatal frequency change over altitudinal gradients:prospects for paleoaltimetry[J]. Rev Mineral Geochem, 2007, 66(1):215-241.
[39]Sinclair TR, Zwieniecki MA, Holbrook NM. Low leaf hydraulic conductance associated with drought tolerance in soybean[J]. Physiol Plantarum, 2008, 132(4):446-451.
[40]Craine JM, Froehle J, Tilman DG, Wedin DA, Chapin Iii FS. The relationships among root and leaf traits of 76 grassland species and relative abundance along fertility and disturbance gradients[J]. Oikos, 2001, 93(2):274-285.
[41]Ackerly DD. Conservatism and diversification of plant functional traits:evolutionary rates versus phylogenetic signal[J]. Proc Natl Acad Sci USA, 2009, 106(S2):19699-19706.
[42]Burns JH, StraussSY. Effects of competition on phylogenetic signal and phenotypic plasticity in plant functional traits[J]. Ecology, 2012, 93(8):S126-S137.
[43]Zhang SB, Sun M, Cao KF, Hu H, Zhang JL. Leaf photosynthetic rate of tropical ferns is evolutionarily linked to water transport capacity[J]. PLoS One, 2014, 9(1):e84682.
[44]Zhang FP, Yang YJ, Yang QY, Zhang W, Brodribb TJ, et al. Floral mass per area and water maintenance traits are correlated with floral longevity in Paphiopedilum (Orchida-ceae)[J]. Front Plant Sci, 2017, 8:501.
[45]Körner C. The use of ‘altitude’ in ecological research[J]. Trends Ecol Evol, 2007, 22(11):569-574.
[46]Thomas SC. Genetic vs. phenotypic responses of trees to altitude[J]. Tree Physiol, 2011, 31(11):1161-1163.
[47]Sun M, Su T, Zhang S, Li S, Anberree-Lebreton J, Zhou Z. Variations in leaf morphological traits of Quercus guyavifolia (Fagaceae) were mainly influenced by water and ultraviolet irradiation at high elevations on the Qinghai-Tibet Plateau, China[J]. Int J Agric Biol, 2016, 18:266-273.
[48]Feng Q, Centritto M, Cheng R, Liu S, Shi Z. Leaf functional trait responses of Quercus aquifolioides to high elevations[J]. Int J Agric Biol, 2013, 15:69-75.
[49]Wang X, Li R, Li X, Ma F, Sun B, et al. Variations in leaf characteristics of three species of angiosperms with changing of altitude in Qilian mountains and their inland high-altitude pattern[J]. Sic China Earth Sci, 2014, 57(4):662-670.
[50]Li C, Zhang X, Liu X, Luukkanen O, Berninger F. Leaf morphological and physiological responses of Quercus aquifolioides along an altitudinal gradient[J]. Silva Fenn, 2006, 40(1):5-13.
[51] 董莉莉, 刘世荣, 史作民, 冯秋红. 中国南北样带上栲属树种叶功能性状与环境因子的关系[J]. 林业科学研究, 2009, 22(4):463-469.Dong L, Liu S, Shi Z, Feng Q. Relationships between leaf traits of Castanopsis species and the environmental factors in the North-South transect of eastern China[J]. Forest Research, 2009, 22(4):463-469.
[52] 田尚青, 朱师丹, 朱俊杰, 申智骅, 曹坤芳. 红树林植物叶片形态和解剖特征对叶肉导度、叶片导水率的影响[J]. 植物科学学报, 2017, 34(6):909-919.Tian SQ, Zhu SD, Zhu JJ, Shen ZH, Cao KF. Impact of leaf morphological and anatomical traits on mesopholl conductance and leaf hydrulic conductance in mangrove plants[J]. Plant Science Journal, 2017, 34(6):909-919.
[53]Beaulieu JM, Leitch IJ, Patel S, Pendharkar A, Knight CA. Genome size is a strong predictor of cell size and stomatal density in angiosperms[J]. New Phytol, 2008, 179(4):975-986.
[54]Brodribb TJ, Jordan GJ, Carpenter RJ. Unified changes in cell size permit coordinated leaf evolution[J]. New Phytol, 2013, 199(2):559-570.
[55]Sack L, Tyree MT, Holbrook NM. Leaf hydraulic architecture correlates with regeneration irradiance in tropical rainforest trees[J]. New Phytol, 2005, 167(2):403-413.
[56]Dalal LP. Stomatal variation in dicot and monocots-a case study[J]. Asia J Biotech Resour, 2012, 3(10):1473-1477.
[57]Bertel C, Schönswetter P, Frajman B, Holzinger A, Neu-ner G. Leaf anatomy of two reciprocally non-monophyletic mountain plants (Heliosperma spp.):does heritable ada-ptation to divergent growing sites accompany the onset of speciation?[J]. Protoplasma, 2017, 254:1411-1420.
[58]Sun M, Yang S, Zhang J, Bartlett M, Zhang S. Correlated evolution in traits influencing leaf water balance in Dendrobium (Orchidaceae)[J]. Plant Ecol, 2014, 215:1255-1267.
[59]Xiao D, Zhang C, Tian K, Liu G, Yang H, An S. Development of alpine wetland vegetation and its effect on carbon sequestration after dam construction:a case study of Lashihai in the northwestern Yunnan plateau in China[J]. Aquat Bot, 2015, 126:16-24.
[60] 丁凌子, 陈亚军, 张教林. 热带雨林木质藤本植物叶片性状及其关联[J]. 植物科学学报, 2014, 32(4):362-370.Ding LZ, Chen YJ, Zhang JL. Leaf traits and their associa-tions among liana species in tropical rainforest[J]. Plant Science Journal, 2014, 32(4):362-370.
[61] 沈亚欧, 李淑君, 林海建, 张志明, 江舟,等. 通过转基因手段改善作物产量性状[J]. 农业生物技术学报, 2011, 4(19):753-762.Shen YO, Li SJ, Lin HJ, Zhang ZM, Jiang Z, et al. Improving crop yield by genetic engineering[J]. Journal of Agricultural Biotechnology, 2011, 4(19):753-762.
[62]Wittek A, Dreyer I, Al-Rasheid KA, Sauer N, Hedrich R, Geiger D. The fungal UmSrt1 and maize ZmSUT1 sucrose transporters battle for plant sugar resources[J]. J Int Plant Biol, 2017, 59(6):422-435.
[63] 刘洋, 付文龙, 操瑜, 李伟. 沉水植物功能性状研究的思考[J]. 植物科学学报, 2017, 35(3):444-451.Liu Y, Fu WL, Cao Y, Li W. Study on the functional traits of submerged macrophytes[J]. Plant Science Journal, 2017, 35(3):444-451.
[64]Wright IJ, Dong N, Maire V, Prentice IC, Westoby M, et al. Global climatic drivers of leaf size[J]. Science, 2017, 357(6354):917-921.
相关知识
植物叶片功能性状及其环境适应研究
植物与环境的关系(一)
植物铁蛋白结构与功能研究
新研究发现鸟类或能适应核辐射环境
【农学课件】植物营养原理
苹果属植物染色体基数X=17起源的细胞遗传学研究
Community/Ecosystem Functional Diversity: measurements and development
黑线仓鼠白化突变系白化性状产生分子机理的研究
植物提取物的抗氧化特性及其在动物无抗饲料中的应用研究进展
植物如何快速适应不断变化的环境条件
网址: 植物叶片功能性状及其环境适应研究 https://m.mcbbbk.com/newsview289826.html
上一篇: 今年8公分柿子树价格+10公分柿 |
下一篇: Research Progres |