首页 > 分享 > [YOLOv7]基于YOLOv7的动物识别系统(源码&部署教程)

[YOLOv7]基于YOLOv7的动物识别系统(源码&部署教程)

1.图片识别

2.png

3.png

4.png

2.支持视频识别

3.视频演示

4.准备YOLOv7格式数据集

如果不懂yolo格式数据集是什么样子的,建议先学习一下。大部分CVer都会推荐用labelImg进行数据的标注,我也不例外,推荐大家用labelImg进行数据标注。不过这里我不再详细介绍如何使用labelImg,网上有很多的教程。同时,标注数据需要用到图形交互界面,远程服务器就不太方便了,因此建议在本地电脑上标注好后再上传到服务器上。

这里假设我们已经得到标注好的yolo格式数据集,那么这个数据集将会按照如下的格式进行存放。
n.png
不过在这里面,train_list.txt和val_list.txt是后来我们要自己生成的,而不是labelImg生成的;其他的则是labelImg生成的。

接下来,就是生成 train_list.txt和val_list.txt。train_list.txt存放了所有训练图片的路径,val_list.txt则是存放了所有验证图片的路径,如下图所示,一行代表一个图片的路径。这两个文件的生成写个循环就可以了,不算难。

5.修改配置文件

总共有两个文件需要配置,一个是/yolov7/cfg/training/yolov7.yaml,这个文件是有关模型的配置文件;一个是/yolov7/data/coco.yaml,这个是数据集的配置文件。

第一步,复制yolov7.yaml文件到相同的路径下,然后重命名,我们重命名为yolov7-Helmet.yaml。

第二步,打开yolov7-Helmet.yaml文件,进行如下图所示的修改,这里修改的地方只有一处,就是把nc修改为我们数据集的目标总数即可。然后保存。

b.png

第三步,复制coco.yaml文件到相同的路径下,然后重命名,我们命名为Helmet.yaml。

第四步,打开Helmet.yaml文件,进行如下所示的修改,需要修改的地方为5处。

第一处:把代码自动下载COCO数据集的命令注释掉,以防代码自动下载数据集占用内存;第二处:修改train的位置为train_list.txt的路径;第三处:修改val的位置为val_list.txt的路径;第四处:修改nc为数据集目标总数;第五处:修改names为数据集所有目标的名称。然后保存。

k.png

6.训练代码

import argparse import logging import math import os import random import time from copy import deepcopy from pathlib import Path from threading import Thread import numpy as np import torch.distributed as dist import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import torch.optim.lr_scheduler as lr_scheduler import torch.utils.data import yaml from torch.cuda import amp from torch.nn.parallel import DistributedDataParallel as DDP from torch.utils.tensorboard import SummaryWriter from tqdm import tqdm import test # import test.py to get mAP after each epoch from models.experimental import attempt_load from models.yolo import Model from utils.autoanchor import check_anchors from utils.datasets import create_dataloader from utils.general import labels_to_class_weights, increment_path, labels_to_image_weights, init_seeds, fitness, strip_optimizer, get_latest_run, check_dataset, check_file, check_git_status, check_img_size, check_requirements, print_mutation, set_logging, one_cycle, colorstr from utils.google_utils import attempt_download from utils.loss import ComputeLoss, ComputeLossOTA from utils.plots import plot_images, plot_labels, plot_results, plot_evolution from utils.torch_utils import ModelEMA, select_device, intersect_dicts, torch_distributed_zero_first, is_parallel from utils.wandb_logging.wandb_utils import WandbLogger, check_wandb_resume logger = logging.getLogger(__name__) def train(hyp, opt, device, tb_writer=None): logger.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items())) save_dir, epochs, batch_size, total_batch_size, weights, rank, freeze = Path(opt.save_dir), opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank, opt.freeze # Directories wdir = save_dir / 'weights' wdir.mkdir(parents=True, exist_ok=True) # make dir last = wdir / 'last.pt' best = wdir / 'best.pt' results_file = save_dir / 'results.txt' # Save run settings with open(save_dir / 'hyp.yaml', 'w') as f: yaml.dump(hyp, f, sort_keys=False) with open(save_dir / 'opt.yaml', 'w') as f: yaml.dump(vars(opt), f, sort_keys=False) # Configure plots = not opt.evolve # create plots cuda = device.type != 'cpu' init_seeds(2 + rank) with open(opt.data) as f: data_dict = yaml.load(f, Loader=yaml.SafeLoader) # data dict is_coco = opt.data.endswith('coco.yaml') # Logging- Doing this before checking the dataset. Might update data_dict loggers = {'wandb': None} # loggers dict if rank in [-1, 0]: opt.hyp = hyp # add hyperparameters run_id = torch.load(weights, map_location=device).get('wandb_id') if weights.endswith('.pt') and os.path.isfile(weights) else None wandb_logger = WandbLogger(opt, Path(opt.save_dir).stem, run_id, data_dict) loggers['wandb'] = wandb_logger.wandb data_dict = wandb_logger.data_dict if wandb_logger.wandb: weights, epochs, hyp = opt.weights, opt.epochs, opt.hyp # WandbLogger might update weights, epochs if resuming nc = 1 if opt.single_cls else int(data_dict['nc']) # number of classes names = ['item'] if opt.single_cls and len(data_dict['names']) != 1 else data_dict['names'] # class names assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (len(names), nc, opt.data) # check # Model pretrained = weights.endswith('.pt') if pretrained: with torch_distributed_zero_first(rank): attempt_download(weights) # download if not found locally ckpt = torch.load(weights, map_location=device) # load checkpoint model = Model(opt.cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create exclude = ['anchor'] if (opt.cfg or hyp.get('anchors')) and not opt.resume else [] # exclude keys state_dict = ckpt['model'].float().state_dict() # to FP32 state_dict = intersect_dicts(state_dict, model.state_dict(), exclude=exclude) # intersect model.load_state_dict(state_dict, strict=False) # load logger.info('Transferred %g/%g items from %s' % (len(state_dict), len(model.state_dict()), weights)) # report else: model = Model(opt.cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create with torch_distributed_zero_first(rank): check_dataset(data_dict) # check train_path = data_dict['train'] test_path = data_dict['val'] # Freeze freeze = [f'model.{x}.' for x in (freeze if len(freeze) > 1 else range(freeze[0]))] # parameter names to freeze (full or partial) for k, v in model.named_parameters(): v.requires_grad = True # train all layers if any(x in k for x in freeze): print('freezing %s' % k) v.requires_grad = False # Optimizer nbs = 64 # nominal batch size accumulate = max(round(nbs / total_batch_size), 1) # accumulate loss before optimizing hyp['weight_decay'] *= total_batch_size * accumulate / nbs # scale weight_decay logger.info(f"Scaled weight_decay = {hyp['weight_decay']}") pg0, pg1, pg2 = [], [], [] # optimizer parameter groups for k, v in model.named_modules(): if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter): pg2.append(v.bias) # biases if isinstance(v, nn.BatchNorm2d): pg0.append(v.weight) # no decay elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter): pg1.append(v.weight) # apply decay if hasattr(v, 'im'): if hasattr(v.im, 'implicit'): pg0.append(v.im.implicit) else: for iv in v.im: pg0.append(iv.implicit) if hasattr(v, 'imc'): if hasattr(v.imc, 'implicit'): pg0.append(v.imc.implicit) else: for iv in v.imc: pg0.append(iv.implicit) if hasattr(v, 'imb'): if hasattr(v.imb, 'implicit'): pg0.append(v.imb.implicit) else: for iv in v.imb: pg0.append(iv.implicit) if hasattr(v, 'imo'): if hasattr(v.imo, 'implicit'): pg0.append(v.imo.implicit) else: for iv in v.imo: pg0.append(iv.implicit) if hasattr(v, 'ia'): if hasattr(v.ia, 'implicit'): pg0.append(v.ia.implicit) else: for iv in v.ia: pg0.append(iv.implicit) if hasattr(v, 'attn'): if hasattr(v.attn, 'logit_scale'): pg0.append(v.attn.logit_scale) if hasattr(v.attn, 'q_bias'): pg0.append(v.attn.q_bias) if hasattr(v.attn, 'v_bias'): pg0.append(v.attn.v_bias) if hasattr(v.attn, 'relative_position_bias_table'): pg0.append(v.attn.relative_position_bias_table) if hasattr(v, 'rbr_dense'): if hasattr(v.rbr_dense, 'weight_rbr_origin'): pg0.append(v.rbr_dense.weight_rbr_origin) if hasattr(v.rbr_dense, 'weight_rbr_avg_conv'): pg0.append(v.rbr_dense.weight_rbr_avg_conv) if hasattr(v.rbr_dense, 'weight_rbr_pfir_conv'): pg0.append(v.rbr_dense.weight_rbr_pfir_conv) if hasattr(v.rbr_dense, 'weight_rbr_1x1_kxk_idconv1'): pg0.append(v.rbr_dense.weight_rbr_1x1_kxk_idconv1) if hasattr(v.rbr_dense, 'weight_rbr_1x1_kxk_conv2'): pg0.append(v.rbr_dense.weight_rbr_1x1_kxk_conv2) if hasattr(v.rbr_dense, 'weight_rbr_gconv_dw'): pg0.append(v.rbr_dense.weight_rbr_gconv_dw) if hasattr(v.rbr_dense, 'weight_rbr_gconv_pw'): pg0.append(v.rbr_dense.weight_rbr_gconv_pw) if hasattr(v.rbr_dense, 'vector'): pg0.append(v.rbr_dense.vector) if opt.adam: optimizer = optim.Adam(pg0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999)) # adjust beta1 to momentum else: optimizer = optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True) optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']}) # add pg1 with weight_decay optimizer.add_param_group({'params': pg2}) # add pg2 (biases) logger.info('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0))) del pg0, pg1, pg2 # Scheduler https://arxiv.org/pdf/1812.01187.pdf # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR if opt.linear_lr: lf = lambda x: (1 - x / (epochs - 1)) * (1.0 - hyp['lrf']) + hyp['lrf'] # linear else: lf = one_cycle(1, hyp['lrf'], epochs) # cosine 1->hyp['lrf'] scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf) # plot_lr_scheduler(optimizer, scheduler, epochs) # EMA ema = ModelEMA(model) if rank in [-1, 0] else None # Resume start_epoch, best_fitness = 0, 0.0 if pretrained: # Optimizer if ckpt['optimizer'] is not None: optimizer.load_state_dict(ckpt['optimizer']) best_fitness = ckpt['best_fitness'] # EMA if ema and ckpt.get('ema'): ema.ema.load_state_dict(ckpt['ema'].float().state_dict()) ema.updates = ckpt['updates'] # Results if ckpt.get('training_results') is not None: results_file.write_text(ckpt['training_results']) # write results.txt # Epochs start_epoch = ckpt['epoch'] + 1 if opt.resume: assert start_epoch > 0, '%s training to %g epochs is finished, nothing to resume.' % (weights, epochs) if epochs < start_epoch: logger.info('%s has been trained for %g epochs. Fine-tuning for %g additional epochs.' % (weights, ckpt['epoch'], epochs)) epochs += ckpt['epoch'] # finetune additional epochs del ckpt, state_dict # Image sizes gs = max(int(model.stride.max()), 32) # grid size (max stride) nl = model.model[-1].nl # number of detection layers (used for scaling hyp['obj']) imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size] # verify imgsz are gs-multiples # DP mode if cuda and rank == -1 and torch.cuda.device_count() > 1: model = torch.nn.DataParallel(model) # SyncBatchNorm if opt.sync_bn and cuda and rank != -1: model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device) logger.info('Using SyncBatchNorm()') # Trainloader dataloader, dataset = create_dataloader(train_path, imgsz, batch_size, gs, opt, hyp=hyp, augment=True, cache=opt.cache_images, rect=opt.rect, rank=rank, world_size=opt.world_size, workers=opt.workers, image_weights=opt.image_weights, quad=opt.quad, prefix=colorstr('train: ')) mlc = np.concatenate(dataset.labels, 0)[:, 0].max() # max label class nb = len(dataloader) # number of batches assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (mlc, nc, opt.data, nc - 1) # Process 0 if rank in [-1, 0]: testloader = create_dataloader(test_path, imgsz_test, batch_size * 2, gs, opt, # testloader hyp=hyp, cache=opt.cache_images and not opt.notest, rect=True, rank=-1, world_size=opt.world_size, workers=opt.workers, pad=0.5, prefix=colorstr('val: '))[0] if not opt.resume: labels = np.concatenate(dataset.labels, 0) c = torch.tensor(labels[:, 0]) # classes # cf = torch.bincount(c.long(), minlength=nc) + 1. # frequency # model._initialize_biases(cf.to(device)) if plots: #plot_labels(labels, names, save_dir, loggers) if tb_writer: tb_writer.add_histogram('classes', c, 0) # Anchors if not opt.noautoanchor: check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz) model.half().float() # pre-reduce anchor precision # DDP mode if cuda and rank != -1: model = DDP(model, device_ids=[opt.local_rank], output_device=opt.local_rank, # nn.MultiheadAttention incompatibility with DDP https://github.com/pytorch/pytorch/issues/26698 find_unused_parameters=any(isinstance(layer, nn.MultiheadAttention) for layer in model.modules())) # Model parameters hyp['box'] *= 3. / nl # scale to layers hyp['cls'] *= nc / 80. * 3. / nl # scale to classes and layers hyp['obj'] *= (imgsz / 640) ** 2 * 3. / nl # scale to image size and layers hyp['label_smoothing'] = opt.label_smoothing model.nc = nc # attach number of classes to model model.hyp = hyp # attach hyperparameters to model model.gr = 1.0 # iou loss ratio (obj_loss = 1.0 or iou) model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc # attach class weights model.names = names # Start training t0 = time.time() nw = max(round(hyp['warmup_epochs'] * nb), 1000) # number of warmup iterations, max(3 epochs, 1k iterations) # nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training maps = np.zeros(nc) # mAP per class results = (0, 0, 0, 0, 0, 0, 0) # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls) scheduler.last_epoch = start_epoch - 1 # do not move scaler = amp.GradScaler(enabled=cuda) compute_loss_ota = ComputeLossOTA(model) # init loss class compute_loss = ComputeLoss(model) # init loss class logger.info(f'Image sizes {imgsz} train, {imgsz_test} testn' f'Using {dataloader.num_workers} dataloader workersn' f'Logging results to {save_dir}n' f'Starting training for {epochs} epochs...') torch.save(model, wdir / 'init.pt') for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------ model.train() # Update image weights (optional) if opt.image_weights: # Generate indices if rank in [-1, 0]: cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc # class weights iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) # image weights dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n) # rand weighted idx # Broadcast if DDP if rank != -1: indices = (torch.tensor(dataset.indices) if rank == 0 else torch.zeros(dataset.n)).int() dist.broadcast(indices, 0) if rank != 0: dataset.indices = indices.cpu().numpy() # Update mosaic border # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs) # dataset.mosaic_border = [b - imgsz, -b] # height, width borders mloss = torch.zeros(4, device=device) # mean losses if rank != -1: dataloader.sampler.set_epoch(epoch) pbar = enumerate(dataloader) logger.info(('n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'total', 'labels', 'img_size')) if rank in [-1, 0]: pbar = tqdm(pbar, total=nb) # progress bar optimizer.zero_grad() for i, (imgs, targets, paths, _) in pbar: # batch ------------------------------------------------------------- ni = i + nb * epoch # number integrated batches (since train start) imgs = imgs.to(device, non_blocking=True).float() / 255.0 # uint8 to float32, 0-255 to 0.0-1.0 # Warmup if ni <= nw: xi = [0, nw] # x interp # model.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou) accumulate = max(1, np.interp(ni, xi, [1, nbs / total_batch_size]).round()) for j, x in enumerate(optimizer.param_groups): # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0 x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 2 else 0.0, x['initial_lr'] * lf(epoch)]) if 'momentum' in x: x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']]) # Multi-scale if opt.multi_scale: sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs # size sf = sz / max(imgs.shape[2:]) # scale factor if sf != 1: ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple) imgs = F.interpolate(imgs, size=ns, mode='bilinear', align_corners=False) # Forward with amp.autocast(enabled=cuda): pred = model(imgs) # forward if 'loss_ota' not in hyp or hyp['loss_ota'] == 1: loss, loss_items = compute_loss_ota(pred, targets.to(device), imgs) # loss scaled by batch_size else: loss, loss_items = compute_loss(pred, targets.to(device)) # loss scaled by batch_size if rank != -1: loss *= opt.world_size # gradient averaged between devices in DDP mode if opt.quad: loss *= 4. # Backward scaler.scale(loss).backward() # Optimize if ni % accumulate == 0: scaler.step(optimizer) # optimizer.step scaler.update() optimizer.zero_grad() if ema: ema.update(model) # Print if rank in [-1, 0]: mloss = (mloss * i + loss_items) / (i + 1) # update mean losses mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0) # (GB) s = ('%10s' * 2 + '%10.4g' * 6) % ( '%g/%g' % (epoch, epochs - 1), mem, *mloss, targets.shape[0], imgs.shape[-1]) pbar.set_description(s) # Plot if plots and ni < 10: f = save_dir / f'train_batch{ni}.jpg' # filename Thread(target=plot_images, args=(imgs, targets, paths, f), daemon=True).start() # if tb_writer: # tb_writer.add_image(f, result, dataformats='HWC', global_step=epoch) # tb_writer.add_graph(torch.jit.trace(model, imgs, strict=False), []) # add model graph elif plots and ni == 10 and wandb_logger.wandb: wandb_logger.log({"Mosaics": [wandb_logger.wandb.Image(str(x), caption=x.name) for x in save_dir.glob('train*.jpg') if x.exists()]}) # end batch ------------------------------------------------------------------------------------------------ # end epoch ---------------------------------------------------------------------------------------------------- # Scheduler lr = [x['lr'] for x in optimizer.param_groups] # for tensorboard scheduler.step() # DDP process 0 or single-GPU if rank in [-1, 0]: # mAP ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'gr', 'names', 'stride', 'class_weights']) final_epoch = epoch + 1 == epochs if not opt.notest or final_epoch: # Calculate mAP wandb_logger.current_epoch = epoch + 1 results, maps, times = test.test(data_dict, batch_size=batch_size * 2, imgsz=imgsz_test, model=ema.ema, single_cls=opt.single_cls, dataloader=testloader, save_dir=save_dir, verbose=nc < 50 and final_epoch, plots=plots and final_epoch, wandb_logger=wandb_logger, compute_loss=compute_loss, is_coco=is_coco) # Write with open(results_file, 'a') as f: f.write(s + '%10.4g' * 7 % results + 'n') # append metrics, val_loss if len(opt.name) and opt.bucket: os.system('gsutil cp %s gs://%s/results/results%s.txt' % (results_file, opt.bucket, opt.name)) # Log tags = ['train/box_loss', 'train/obj_loss', 'train/cls_loss', # train loss 'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95', 'val/box_loss', 'val/obj_loss', 'val/cls_loss', # val loss 'x/lr0', 'x/lr1', 'x/lr2'] # params for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags): if tb_writer: tb_writer.add_scalar(tag, x, epoch) # tensorboard if wandb_logger.wandb: wandb_logger.log({tag: x}) # W&B # Update best mAP fi = fitness(np.array(results).reshape(1, -1)) # weighted combination of [P, R, mAP@.5, mAP@.5-.95] if fi > best_fitness: best_fitness = fi wandb_logger.end_epoch(best_result=best_fitness == fi) # Save model if (not opt.nosave) or (final_epoch and not opt.evolve): # if save ckpt = {'epoch': epoch, 'best_fitness': best_fitness, 'training_results': results_file.read_text(), 'model': deepcopy(model.module if is_parallel(model) else model).half(), 'ema': deepcopy(ema.ema).half(), 'updates': ema.updates, 'optimizer': optimizer.state_dict(), 'wandb_id': wandb_logger.wandb_run.id if wandb_logger.wandb else None} # Save last, best and delete torch.save(ckpt, last) if best_fitness == fi: torch.save(ckpt, best) if (best_fitness == fi) and (epoch >= 200): torch.save(ckpt, wdir / 'best_{:03d}.pt'.format(epoch)) if epoch == 0: torch.save(ckpt, wdir / 'epoch_{:03d}.pt'.format(epoch)) elif ((epoch+1) % 25) == 0: torch.save(ckpt, wdir / 'epoch_{:03d}.pt'.format(epoch)) elif epoch >= (epochs-5): torch.save(ckpt, wdir / 'epoch_{:03d}.pt'.format(epoch)) if wandb_logger.wandb: if ((epoch + 1) % opt.save_period == 0 and not final_epoch) and opt.save_period != -1: wandb_logger.log_model( last.parent, opt, epoch, fi, best_model=best_fitness == fi) del ckpt # end epoch ---------------------------------------------------------------------------------------------------- # end training if rank in [-1, 0]: # Plots if plots: plot_results(save_dir=save_dir) # save as results.png if wandb_logger.wandb: files = ['results.png', 'confusion_matrix.png', *[f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R')]] wandb_logger.log({"Results": [wandb_logger.wandb.Image(str(save_dir / f), caption=f) for f in files if (save_dir / f).exists()]}) # Test best.pt logger.info('%g epochs completed in %.3f hours.n' % (epoch - start_epoch + 1, (time.time() - t0) / 3600)) if opt.data.endswith('coco.yaml') and nc == 80: # if COCO for m in (last, best) if best.exists() else (last): # speed, mAP tests results, _, _ = test.test(opt.data, batch_size=batch_size * 2, imgsz=imgsz_test, conf_thres=0.001, iou_thres=0.7, model=attempt_load(m, device).half(), single_cls=opt.single_cls, dataloader=testloader, save_dir=save_dir, save_json=True, plots=False, is_coco=is_coco) # Strip optimizers final = best if best.exists() else last # final model for f in last, best: if f.exists(): strip_optimizer(f) # strip optimizers if opt.bucket: os.system(f'gsutil cp {final} gs://{opt.bucket}/weights') # upload if wandb_logger.wandb and not opt.evolve: # Log the stripped model wandb_logger.wandb.log_artifact(str(final), type='model', name='run_' + wandb_logger.wandb_run.id + '_model', aliases=['last', 'best', 'stripped']) wandb_logger.finish_run() else: dist.destroy_process_group() torch.cuda.empty_cache() return results if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--weights', type=str, default='yolov7.pt', help='initial weights path') parser.add_argument('--cfg', type=str, default='cfg/training/yolov7.yaml', help='model.yaml path') parser.add_argument('--data', type=str, default='data/coco.yaml', help='data.yaml path') parser.add_argument('--hyp', type=str, default='data/hyp.scratch.p5.yaml', help='hyperparameters path') parser.add_argument('--epochs', type=int, default=300) parser.add_argument('--batch-size', type=int, default=4, help='total batch size for all GPUs') parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='[train, test] image sizes') parser.add_argument('--rect', action='store_true', help='rectangular training') parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training') parser.add_argument('--nosave', action='store_true', help='only save final checkpoint') parser.add_argument('--notest', action='store_true', help='only test final epoch') parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check') parser.add_argument('--evolve', action='store_true', help='evolve hyperparameters') parser.add_argument('--bucket', type=str, default='', help='gsutil bucket') parser.add_argument('--cache-images', action='store_true', help='cache images for faster training') parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training') parser.add_argument('--device', default='0', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%') parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class') parser.add_argument('--adam', action='store_true', help='use torch.optim.Adam() optimizer') parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode') parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify') parser.add_argument('--workers', type=int, default=0, help='maximum number of dataloader workers') parser.add_argument('--project', default='runs/train', help='save to project/name') parser.add_argument('--entity', default=None, help='W&B entity') parser.add_argument('--name', default='exp', help='save to project/name') parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment') parser.add_argument('--quad', action='store_true', help='quad dataloader') parser.add_argument('--linear-lr', action='store_true', help='linear LR') parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon') parser.add_argument('--upload_dataset', action='store_true', help='Upload dataset as W&B artifact table') parser.add_argument('--bbox_interval', type=int, default=-1, help='Set bounding-box image logging interval for W&B') parser.add_argument('--save_period', type=int, default=-1, help='Log model after every "save_period" epoch') parser.add_argument('--artifact_alias', type=str, default="latest", help='version of dataset artifact to be used') parser.add_argument('--freeze', nargs='+', type=int, default=[0], help='Freeze layers: backbone of yolov7=50, first3=0 1 2') opt = parser.parse_args() # Set DDP variables opt.world_size = int(os.environ['WORLD_SIZE']) if 'WORLD_SIZE' in os.environ else 1 opt.global_rank = int(os.environ['RANK']) if 'RANK' in os.environ else -1 set_logging(opt.global_rank) #if opt.global_rank in [-1, 0]: # check_git_status() # check_requirements() # Resume wandb_run = check_wandb_resume(opt) if opt.resume and not wandb_run: # resume an interrupted run ckpt = opt.resume if isinstance(opt.resume, str) else get_latest_run() # specified or most recent path assert os.path.isfile(ckpt), 'ERROR: --resume checkpoint does not exist' apriori = opt.global_rank, opt.local_rank with open(Path(ckpt).parent.parent / 'opt.yaml') as f: opt = argparse.Namespace(**yaml.load(f, Loader=yaml.SafeLoader)) # replace opt.cfg, opt.weights, opt.resume, opt.batch_size, opt.global_rank, opt.local_rank = '', ckpt, True, opt.total_batch_size, *apriori # reinstate logger.info('Resuming training from %s' % ckpt) else: # opt.hyp = opt.hyp or ('hyp.finetune.yaml' if opt.weights else 'hyp.scratch.yaml') opt.data, opt.cfg, opt.hyp = check_file(opt.data), check_file(opt.cfg), check_file(opt.hyp) # check files assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified' opt.img_size.extend([opt.img_size[-1]] * (2 - len(opt.img_size))) # extend to 2 sizes (train, test) opt.name = 'evolve' if opt.evolve else opt.name opt.save_dir = increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok | opt.evolve) # increment run # DDP mode opt.total_batch_size = opt.batch_size device = select_device(opt.device, batch_size=opt.batch_size) if opt.local_rank != -1: assert torch.cuda.device_count() > opt.local_rank torch.cuda.set_device(opt.local_rank) device = torch.device('cuda', opt.local_rank) dist.init_process_group(backend='nccl', init_method='env://') # distributed backend assert opt.batch_size % opt.world_size == 0, '--batch-size must be multiple of CUDA device count' opt.batch_size = opt.total_batch_size // opt.world_size # Hyperparameters with open(opt.hyp) as f: hyp = yaml.load(f, Loader=yaml.SafeLoader) # load hyps # Train logger.info(opt) if not opt.evolve: tb_writer = None # init loggers if opt.global_rank in [-1, 0]: prefix = colorstr('tensorboard: ') logger.info(f"{prefix}Start with 'tensorboard --logdir {opt.project}', view at http://localhost:6006/") tb_writer = SummaryWriter(opt.save_dir) # Tensorboard train(hyp, opt, device, tb_writer) # Evolve hyperparameters (optional) else: # Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit) meta = {'lr0': (1, 1e-5, 1e-1), # initial learning rate (SGD=1E-2, Adam=1E-3) 'lrf': (1, 0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf) 'momentum': (0.3, 0.6, 0.98), # SGD momentum/Adam beta1 'weight_decay': (1, 0.0, 0.001), # optimizer weight decay 'warmup_epochs': (1, 0.0, 5.0), # warmup epochs (fractions ok) 'warmup_momentum': (1, 0.0, 0.95), # warmup initial momentum 'warmup_bias_lr': (1, 0.0, 0.2), # warmup initial bias lr 'box': (1, 0.02, 0.2), # box loss gain 'cls': (1, 0.2, 4.0), # cls loss gain 'cls_pw': (1, 0.5, 2.0), # cls BCELoss positive_weight 'obj': (1, 0.2, 4.0), # obj loss gain (scale with pixels) 'obj_pw': (1, 0.5, 2.0), # obj BCELoss positive_weight 'iou_t': (0, 0.1, 0.7), # IoU training threshold 'anchor_t': (1, 2.0, 8.0), # anchor-multiple threshold 'anchors': (2, 2.0, 10.0), # anchors per output grid (0 to ignore) 'fl_gamma': (0, 0.0, 2.0), # focal loss gamma (efficientDet default gamma=1.5) 'hsv_h': (1, 0.0, 0.1), # image HSV-Hue augmentation (fraction) 'hsv_s': (1, 0.0, 0.9), # image HSV-Saturation augmentation (fraction) 'hsv_v': (1, 0.0, 0.9), # image HSV-Value augmentation (fraction) 'degrees': (1, 0.0, 45.0), # image rotation (+/- deg) 'translate': (1, 0.0, 0.9), # image translation (+/- fraction) 'scale': (1, 0.0, 0.9), # image scale (+/- gain) 'shear': (1, 0.0, 10.0), # image shear (+/- deg) 'perspective': (0, 0.0, 0.001), # image perspective (+/- fraction), range 0-0.001 'flipud': (1, 0.0, 1.0), # image flip up-down (probability) 'fliplr': (0, 0.0, 1.0), # image flip left-right (probability) 'mosaic': (1, 0.0, 1.0), # image mixup (probability) 'mixup': (1, 0.0, 1.0), # image mixup (probability) 'copy_paste': (1, 0.0, 1.0), # segment copy-paste (probability) 'paste_in': (1, 0.0, 1.0)} # segment copy-paste (probability) with open(opt.hyp, errors='ignore') as f: hyp = yaml.safe_load(f) # load hyps dict if 'anchors' not in hyp: # anchors commented in hyp.yaml hyp['anchors'] = 3 assert opt.local_rank == -1, 'DDP mode not implemented for --evolve' opt.notest, opt.nosave = True, True # only test/save final epoch # ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices yaml_file = Path(opt.save_dir) / 'hyp_evolved.yaml' # save best result here if opt.bucket: os.system('gsutil cp gs://%s/evolve.txt .' % opt.bucket) # download evolve.txt if exists for _ in range(300): # generations to evolve if Path('evolve.txt').exists(): # if evolve.txt exists: select best hyps and mutate # Select parent(s) parent = 'single' # parent selection method: 'single' or 'weighted' x = np.loadtxt('evolve.txt', ndmin=2) n = min(5, len(x)) # number of previous results to consider x = x[np.argsort(-fitness(x))][:n] # top n mutations w = fitness(x) - fitness(x).min() # weights if parent == 'single' or len(x) == 1: # x = x[random.randint(0, n - 1)] # random selection x = x[random.choices(range(n), weights=w)[0]] # weighted selection elif parent == 'weighted': x = (x * w.reshape(n, 1)).sum(0) / w.sum() # weighted combination # Mutate mp, s = 0.8, 0.2 # mutation probability, sigma npr = np.random npr.seed(int(time.time())) g = np.array([x[0] for x in meta.values()]) # gains 0-1 ng = len(meta) v = np.ones(ng) while all(v == 1): # mutate until a change occurs (prevent duplicates) v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0) for i, k in enumerate(hyp.keys()): # plt.hist(v.ravel(), 300) hyp[k] = float(x[i + 7] * v[i]) # mutate # Constrain to limits for k, v in meta.items(): hyp[k] = max(hyp[k], v[1]) # lower limit hyp[k] = min(hyp[k], v[2]) # upper limit hyp[k] = round(hyp[k], 5) # significant digits # Train mutation results = train(hyp.copy(), opt, device) # Write mutation results print_mutation(hyp.copy(), results, yaml_file, opt.bucket) # Plot results plot_evolution(yaml_file) print(f'Hyperparameter evolution complete. Best results saved as: {yaml_file}n' f'Command to train a new model with these hyperparameters: $ python train.py --hyp {yaml_file}') 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702

7.UI界面的编写&系统的整合

class Thread_1(QThread): # 线程1 def __init__(self,info1): super().__init__() self.info1=info1 self.run2(self.info1) def run2(self, info1): result = [] result = det_yolov7(info1) class Ui_MainWindow(object): def setupUi(self, MainWindow): MainWindow.setObjectName("MainWindow") MainWindow.resize(1280, 960) MainWindow.setStyleSheet("background-image: url("./template/carui.png")") self.centralwidget = QtWidgets.QWidget(MainWindow) self.centralwidget.setObjectName("centralwidget") self.label = QtWidgets.QLabel(self.centralwidget) self.label.setGeometry(QtCore.QRect(168, 60, 551, 71)) self.label.setAutoFillBackground(False) self.label.setStyleSheet("") self.label.setFrameShadow(QtWidgets.QFrame.Plain) self.label.setAlignment(QtCore.Qt.AlignCenter) self.label.setObjectName("label") self.label.setStyleSheet("font-size:42px;font-weight:bold;font-family:SimHei;background:rgba(255,255,255,0);") self.label_2 = QtWidgets.QLabel(self.centralwidget) self.label_2.setGeometry(QtCore.QRect(40, 188, 751, 501)) self.label_2.setStyleSheet("background:rgba(255,255,255,1);") self.label_2.setAlignment(QtCore.Qt.AlignCenter) self.label_2.setObjectName("label_2") self.textBrowser = QtWidgets.QTextBrowser(self.centralwidget) self.textBrowser.setGeometry(QtCore.QRect(73, 746, 851, 174)) self.textBrowser.setStyleSheet("background:rgba(0,0,0,0);") self.textBrowser.setObjectName("textBrowser") self.pushButton = QtWidgets.QPushButton(self.centralwidget) self.pushButton.setGeometry(QtCore.QRect(1020, 750, 150, 40)) self.pushButton.setStyleSheet("background:rgba(53,142,255,1);border-radius:10px;padding:2px 4px;") self.pushButton.setObjectName("pushButton") self.pushButton_2 = QtWidgets.QPushButton(self.centralwidget) self.pushButton_2.setGeometry(QtCore.QRect(1020, 810, 150, 40)) self.pushButton_2.setStyleSheet("background:rgba(53,142,255,1);border-radius:10px;padding:2px 4px;") self.pushButton_2.setObjectName("pushButton_2") self.pushButton_3 = QtWidgets.QPushButton(self.centralwidget) self.pushButton_3.setGeometry(QtCore.QRect(1020, 870, 150, 40)) self.pushButton_3.setStyleSheet("background:rgba(53,142,255,1);border-radius:10px;padding:2px 4px;") self.pushButton_3.setObjectName("pushButton_2") MainWindow.setCentralWidget(self.centralwidget) self.retranslateUi(MainWindow) QtCore.QMetaObject.connectSlotsByName(MainWindow) def retranslateUi(self, MainWindow): _translate = QtCore.QCoreApplication.translate MainWindow.setWindowTitle(_translate("MainWindow", "基于YOLOv7动物识别系统")) self.label.setText(_translate("MainWindow", "基于YOLOv7动物识别系统")) self.label_2.setText(_translate("MainWindow", "请添加对象,注意路径不要存在中文")) self.pushButton.setText(_translate("MainWindow", "选择对象")) self.pushButton_2.setText(_translate("MainWindow", "开始识别")) self.pushButton_3.setText(_translate("MainWindow", "退出系统")) # 点击文本框绑定槽事件 self.pushButton.clicked.connect(self.openfile) self.pushButton_2.clicked.connect(self.click_1) self.pushButton_3.clicked.connect(self.handleCalc3) def openfile(self): global sname, filepath fname = QFileDialog() fname.setAcceptMode(QFileDialog.AcceptOpen) fname, _ = fname.getOpenFileName() if fname == '': return filepath = os.path.normpath(fname) sname = filepath.split(os.sep) ui.printf("当前选择的文件路径是:%s" % filepath) try: show = cv2.imread(filepath) ui.showimg(show) except: ui.printf('请检查路径是否存在中文,更名后重试!') def handleCalc3(self): os._exit(0) def printf(self,text): self.textBrowser.append(text) self.cursor = self.textBrowser.textCursor() self.textBrowser.moveCursor(self.cursor.End) QtWidgets.QApplication.processEvents() def showimg(self,img): global vid img2 = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) _image = QtGui.QImage(img2[:], img2.shape[1], img2.shape[0], img2.shape[1] * 3, QtGui.QImage.Format_RGB888) n_width = _image.width() n_height = _image.height() if n_width / 500 >= n_height / 400: ratio = n_width / 700 else: ratio = n_height / 700 new_width = int(n_width / ratio) new_height = int(n_height / ratio) new_img = _image.scaled(new_width, new_height, Qt.KeepAspectRatio) self.label_2.setPixmap(QPixmap.fromImage(new_img)) def click_1(self): global filepath try: self.thread_1.quit() except: pass self.thread_1 = Thread_1(filepath) # 创建线程 self.thread_1.wait() self.thread_1.start() # 开始线程 if __name__ == "__main__": app = QtWidgets.QApplication(sys.argv) MainWindow = QtWidgets.QMainWindow() ui = Ui_MainWindow() ui.setupUi(MainWindow) MainWindow.show() sys.exit(app.exec_()) 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127

8.项目展示

1.png

9.完整源码&环境部署视频教程&自定义UI界面:

相关知识

[YOLOv7]基于YOLOv7的动物识别系统(源码&部署教程)
探索YoloV7
基于YOLOv8/YOLOv7/YOLOv6/YOLOv5的鸟类识别系统(Python+PySide6界面+训练代码)
[数据集][目标检测]遛狗不牵绳数据集VOC格式
基于深度学习的多种类动物识别系统(网页版+YOLOv8/v7/v6/v5代码+训练数据集)
基于YOLOv8/YOLOv7/YOLOv6/YOLOv5的障碍物检测系统(深度学习代码+UI界面+训练数据集)
基于深度学习的鸟类识别系统(网页版+YOLOv8/v7/v6/v5代码+训练数据集)
基于微信小程序的宠物寄养平台(附源码,部署教程)
基于深度学习的动物识别系统(网页版+YOLOv8/v7/v6/v5代码+训练数据集)
基于深度学习的犬种识别系统详解(网页版+YOLOv8/v7/v6/v5代码+训练数据集)

网址: [YOLOv7]基于YOLOv7的动物识别系统(源码&部署教程) https://m.mcbbbk.com/newsview355698.html

所属分类:萌宠日常
上一篇: 动物的压力:如何识别和治疗
下一篇: IP查询网络威胁溯源追击