首页 > 分享 > Towards understanding antibiotic resistance in animals

Towards understanding antibiotic resistance in animals

[1]Sun J, Liao XP, Liu YH, et al. One Health: an approach to resolving antibiotic resistance.Infect Dis Transl Med, 2016, 2(3): 122–124.[2]van Boeckel TP, Brower C, Gilbert M, et al. Global trends in antimicrobial use in food animals.Proc Natl Acad Sci USA, 2015, 112(18): 5649–5654.DOI: 10.1073/pnas.1503141112[3]Arias CA, Murray BE. Antibiotic-resistant bugs in the 21st century—a clinical super-challenge.N Engl J Med, 2009, 360: 439–443.DOI: 10.1056/NEJMp0804651[4]Carattoli A. Animal reservoirs for extended spectrum β-lactamase producers.Clin Microbiol Infect, 2008, 14(S1): 117–123.[5]Woodford N, Wareham DW, Guerra B, et al. Carbapenemase-producing Enterobacteriaceae and non-Enterobacteriaceae from animals and the environment: an emerging public health risk of our own making?.J Antimicrob Chemother, 2014, 69(2): 287–291.DOI: 10.1093/jac/dkt392[6]Yong D, Toleman MA, Giske CG, et al. Characterization of a new metallo-β-lactamase gene, blaNDM-1, and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India.Antimicrob Agents Chemother, 2009, 53(12): 5046–5054.DOI: 10.1128/AAC.00774-09[7]Kobayashi K, Hayashi I, Kouda S, et al. Identification and characterization of a novel aac(6')-Iag associated with the blaIMP-1-integron in a multidrug-resistant Pseudomonas aeruginosa.PLoS ONE, 2013, 8(8): e70557.DOI: 10.1371/journal.pone.0070557[8]He T, Wang Y, Sun LC, et al. Occurrence and characterization of blaNDM-5-positive Klebsiella pneumoniae isolates from dairy cows in Jiangsu, China.J Antimicrob Chemother, 2016, 72(1): 90–94.[9]Martínez-Martínez L, González-López JJ. Carbapenemases in Enterobacteriaceae: types and molecular epidemiology.Enferm Infecc Microbiol Clín, 2014, 32(S4): 4–9.[10]Carattoli A. Plasmids and the spread of resistance.Int J Med Microbiol, 2013, 303(6/7): 298–304.[11]Johnson AP, Woodford N. Global spread of antibiotic resistance: the example of New Delhi metallo-β-lactamase (NDM)-mediated carbapenem resistance.J Med Microbiol, 2013, 62(4): 499–513.DOI: 10.1099/jmm.0.052555-0[12]Poirel L, Lagrutta E, Taylor P, et al. Emergence of metallo-β-Lactamase NDM-1-producing multidrug- resistant Escherichia coli in Australia.Antimicrob Agents Chemother, 2010, 54(11): 4914–4916.DOI: 10.1128/AAC.00878-10[13]Wang Y, Wang X, Schwarz S, et al. IMP-45-producing multidrug-resistant Pseudomonas aeruginosa of canine origin.J Antimicrob Chemother, 2014, 69(9): 2579–2581.DOI: 10.1093/jac/dku133[14]Zhang RM, Liu ZH, Li JY, et al. Presence of VIM-positive Pseudomonas species in chickens and their surrounding environment.Antimicrob Agents Chemother, 2017, 61(7): e00167–17.[15]Madec JY, Haenni M, Nordmann P, et al. Extended-spectrum β-lactamase/AmpC- and carbapenemase-producing Enterobacteriaceae in animals: a threat for humans?.Clin Microbiol Infect, 2017, 23(11): 826–833.DOI: 10.1016/j.cmi.2017.01.013[16]Wang Y, Wu CM, Zhang QJ, et al. Identification of New Delhi metallo-β-lactamase 1 in Acinetobacter lwoffii of food animal origin.PLoS ONE, 2012, 7(5): e37152.DOI: 10.1371/journal.pone.0037152[17]Zhang WJ, Lu ZL, Schwarz S, et al. Complete sequence of the blaNDM-1-carrying plasmid pNDM-AB from Acinetobacter baumannii of food animal origin.J Antimicrob Chemother, 2013, 68(7): 1681–1682.DOI: 10.1093/jac/dkt066[18]Zhang RM, Wang Y, Liu ZH, et al. Characterization of NDM-1-producing carbapenemase in Acinetobacter spp. and E. coli isolates from diseased pigs.Front Agr Sci Eng, 2015, 2(3): 223–229.DOI: 10.15302/J-FASE-2015065[19]Yang YQ, Zhang AY, Ma SZ, et al. Co-occurrence of mcr-1 and ESBL on a single plasmid in Salmonella enterica.J Antimicrob Chemother, 2016, 71(8): 2336–2338.DOI: 10.1093/jac/dkw243[20]Liu BT, Song FJ, Zou M, et al. High incidence of Escherichia coli strains coharboring mcr-1 and blaNDM from chickens.Antimicrob Agents Chemother, 2017, 61(3): e02347–16.[21]Kong LH, Lei CW, Ma SZ, et al. Various sequence types of Escherichia coli isolates coharboring blaNDM-5 and mcr-1 genes from a commercial swine farm in China.Antimicrob Agents Chemother, 2017, 61(3): e02167–16.[22]Liu BT, Song FJ, Zou M, et al. Emergence of colistin resistance gene mcr-1 in Cronobacter sakazakii producing NDM-9 and in Escherichia coli from the same animal.Antimicrob Agents Chemother, 2017, 61(2): e01444–16.[23]Wang RB, Liu YQ, Zhang Q, et al. The prevalence of colistin resistance in Escherichia coli and Klebsiella pneumoniae isolated from food animals in China: coexistence of mcr-1 and blaNDM with low fitness cost.Int J Antimicrob Agents, 2018, 51(5): 739–744.DOI: 10.1016/j.ijantimicag.2018.01.023[24]Liu ZH, Wang Y, Walsh TR, et al. Plasmid-mediated novel blaNDM-17 gene encoding a carbapenemase with enhanced activity in a sequence type 48 Escherichia coli strain.Antimicrob Agents Chemother, 2017, 61(5): e02233–16.[25]Liu ZH, Li JY, Wang XM, et al. Novel variant of new delhi metallo-β-lactamase, NDM-20, in Escherichia coli.Front Microbiol, 2018, 9: 248.DOI: 10.3389/fmicb.2018.00248[26]Ghatak S, Singha A, Sen A, et al. Detection of new delhi metallo-beta-Lactamase and Extended-Spectrum beta-Lactamase Genes in Escherichia coli isolated from mastitic milk samples.Transbound Emerg Dis, 2013, 60(5): 385–389.DOI: 10.1111/tbed.2013.60.issue-5[27]Fischer J, Schmoger S, Jahn S, et al. NDM-1 carbapenemase-producing Salmonella enterica subsp. enterica serovar Corvallis isolated from a wild bird in Germany.J Antimicrob Chemother, 2013, 68(12): 2954–2956.DOI: 10.1093/jac/dkt260[28]Shaheen BW, Nayak R, Boothe DM. Emergence of a New Delhi metallo-β-lactamase (NDM-1)-encoding gene in clinical Escherichia coli isolates recovered from companion animals in the United States.Antimicrob Agents Chemother, 2013, 57(6): 2902–2903.DOI: 10.1128/AAC.02028-12[29]Wang Y, Zhang RM, Li JY, et al. Comprehensive resistome analysis reveals the prevalence of NDM and MCR-1 in Chinese poultry production.Nat Microbiol, 2017, 2: 16260.DOI: 10.1038/nmicrobiol.2016.260[30]He T, Wei RC, Zhang LL, et al. Characterization of NDM-5-positive extensively resistant Escherichia coli isolates from dairy cows.Vet Microbiol, 2017, 207: 153–158.DOI: 10.1016/j.vetmic.2017.06.010[31]Sun J, Yang RS, Zhang QJ, et al. Co-transfer of blaNDM-5 and mcr-1 by an IncX3-X4 hybrid plasmid in Escherichia coli.Nat Microbiol, 2016, 1: 16176.DOI: 10.1038/nmicrobiol.2016.176[32]Cui LQ, Lei L, Lv Y, et al. blaNDM-1-producing multidrug-resistant Escherichia coli isolated from a companion dog in China.J Glob Antimicrob Resist, 2017, 13: 24–27.[33]Lauretti L, Riccio ML, Mazzariol A, et al. Cloning and characterization of blaVIM, a new integron-borne metallo-β-lactamase gene from a Pseudomonas aeruginosa clinical isolate.Antimicrob Agents Chemother, 1999, 43(7): 1584–1590.[34]Liu YY, Wang Y, Walsh TR, et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study.Lancet Infect Dis, 2016, 16(2): 161–168.DOI: 10.1016/S1473-3099(15)00424-7[35]Gao RS, Hu YF, Li ZC, et al. Dissemination and mechanism for the MCR-1 colistin resistance.PLoS Pathog, 2016, 12(11): e1005957.DOI: 10.1371/journal.ppat.1005957[36]Wei WH, Srinivas S, Lin JX, et al. Defining ICR-Mo, an intrinsic colistin resistance determinant from Moraxella osloensis.PLoS Genet, 2018, 14(5): e1007389.DOI: 10.1371/journal.pgen.1007389[37]Xu YC, Lin JX, Cui T, et al. Mechanistic insights into transferable polymyxin resistance among gut bacteria.J Biol Chem, 2018, 293(12): 4350–4365.DOI: 10.1074/jbc.RA117.000924[38]Xu YC, Wei WH, Lei S, et al. An evolutionarily conserved mechanism for intrinsic and transferable polymyxin resistance.mBio, 2018, 9(2): e02317–17.[39]Sun J, Xu YC, Gao RS, et al. Deciphering MCR-2 Colistin Resistance.mBio, 2017, 8(3): e00625–17.[40]Sun J, Zhang HM, Liu YH, et al. Towards understanding MCR-like colistin resistance.Trends Microbiol, 2018.DOI: 10.1016/j.tim.2018.02.006[41]Feng YJ. Transferability of MCR-1/2 polymyxin resistance: Complex dissemination and genetic mechanism.ACS Infect Dis, 2018, 4(3): 291–300.DOI: 10.1021/acsinfecdis.7b00201[42]Wang XN, Zhang HM, Sun J, et al. The MCR-1 colistin resistance: A new challenge to global public health.Chin Sci Bull, 2017, 62(10): 1018–1029.DOI: 10.1360/N972016-01084[43]Lv J, Mohsin M, Lei S, et al. Discovery of a mcr-1-bearing plasmid in commensal colistin-resistant Escherichia coli from healthy broilers in Faisalabad, Pakistan.Virulence, 2018.DOI: 10.1080/21505594.2018.1462060[44]Gao RS, Wang QJ, Li P, et al. Genome sequence and characteristics of plasmid pWH12, a variant of the mcr-1-harbouring plasmid pHNSHP45, from the multi-drug resistant E. coli.Virulence, 2016, 7(6): 732–735.DOI: 10.1080/21505594.2016.1193279[45]Li ZC, Tan C, Lin JX, et al. Diversified variants of the mcr-1-carrying plasmid reservoir in the swine lung microbiota.Sci China Life Sci, 2016, 59(9): 971–973.DOI: 10.1007/s11427-016-5111-9[46]Gao RS, Li Y, Lin JX, et al. Unexpected complexity of multidrug resistance in the mcr-1-harbouring Escherichia coli.Sci China Life Sci, 2016, 59(7): 732–734.DOI: 10.1007/s11427-016-5070-1[47]Zhang HM, Seward CH, Wu ZW, et al. Genomic insights into the ESBL and MCR-1-producing ST648 Escherichia coli with multi-drug resistance.Sci Bull, 2016, 61(11): 875–878.DOI: 10.1007/s11434-016-1086-y[48]Wang QJ, Li ZC, Lin JX, et al. Complex dissemination of the diversified mcr-1-harbouring plasmids in Escherichia coli of different sequence types.Oncotarget, 2016, 7(50): 82112–82122.[49]Schwarz S, Johnson AP. Transferable resistance to colistin: a new but old threat.J Antimicrob Chemother, 2016, 71(8): 2066–2070.DOI: 10.1093/jac/dkw274[50]Li XP, Fang LX, Song JQ, et al. Clonal spread of mcr-1 in PMQR-carrying ST34 Salmonella isolates from animals in China.Sci Rep, 2016, 6: 38511.DOI: 10.1038/srep38511[51]Li XP, Fang LX, Jiang P, et al. Emergence of the colistin resistance gene mcr-1 in Citrobacter freundii.Int J Antimicrob Agents, 2017, 49(6): 786–787.DOI: 10.1016/j.ijantimicag.2017.04.004[52]Shen ZQ, Wang Y, Shen YB, et al. Early emergence of mcr-1 in Escherichia coli from food-producing animals.Lancet Infect Dis, 2016, 16(3): 293.DOI: 10.1016/S1473-3099(16)00061-X[53]Yang YQ, Li YX, Song T, et al. Colistin resistance gene mcr-1 and its variant in Escherichia coli isolates from chickens in China.Antimicrob Agents Chemother, 2017, 61(5): e01204–16.[54]Ma SZ, Lei CW, Kong LH, et al. Prevalence, antimicrobial resistance, and relatedness of salmonella isolated from chickens and pigs on farms, abattoirs, and markets in Sichuan province, China.Foodborne Pathog Dis, 2017, 14(11): 667–677.DOI: 10.1089/fpd.2016.2264[55]Lv L, Cao Y, Yu P, et al. Detection of mcr-1 gene among Escherichia coli isolates from farmed fish and characterization of mcr-1-bearing incp plasmids.Antimicrob Agents Chemother, 2018, 62(3): e02378–17.[56]Trung NV, Matamoros S, Carrique-Mas JJ, et al. Zoonotic transmission of mcr-1 colistin resistance gene from small-scale poultry farms, Vietnam.Emerg Infect Dis, 2017, 23(3): 529–532.DOI: 10.3201/eid2303.161553[57]Wang RB, van Dorp L, Shaw LP, et al. The global distribution and spread of the mobilized colistin resistance gene mcr-1.Nat Commun, 2018, 9(1): 1179.DOI: 10.1038/s41467-018-03205-z[58]Wang QQ, Sun J, Li J, et al. Expanding landscapes of the diversified mcr-1-bearing plasmid reservoirs.Microbiome, 2017, 5: 70.DOI: 10.1186/s40168-017-0288-0[59]Sun J, Li XP, Fang LX, et al. Co-occurrence of mcr-1 in the chromosome and on an IncHI2 plasmid: persistence of colistin resistance in Escherichia coli.Int J Antimicrob Agents, 2018, 51(6): 842–847.DOI: 10.1016/j.ijantimicag.2018.01.007[60]Sun J, Fang LX, Wu ZW, et al. Genetic analysis of the IncX4 plasmids: implications for a unique pattern in the mcr-1 acquisition.Sci Rep, 2017, 7: 424.DOI: 10.1038/s41598-017-00095-x[61]Snesrud E, McGann P, Chandler M. The birth and demise of the ISApl1-mcr-1-ISApl1 composite transposon: the vehicle for transferable colistin resistance.mBio, 2018, 9(1): e02381–17.[62]Poirel L, Kieffer N, Liassine N, et al. Plasmid-mediated carbapenem and colistin resistance in a clinical isolate of Escherichia coli.Lancet Infect Dis, 2016, 16(3): 281.[63]Sun J, Li XP, Yang RS, et al. Complete nucleotide sequence of an IncI2 plasmid coharboring blaCTX-M-55 and mcr-1.Antimicrob Agents Chemother, 2016, 60(8): 5014–5017.DOI: 10.1128/AAC.00774-16[64]Sun J, Zeng X, Li XP, Li ao, X .P, et al. Plasmid-mediated colistin resistance in animals: current status and future directions.Animal Health Res Rev, 2017, 18(2): 136–152.DOI: 10.1017/S1466252317000111[65]Zhong LL, Zhang YF, Doi Y, et al. Coproduction of MCR-1 and NDM-1 by colistin-resistant Escherichia coli isolated from a healthy individual.Antimicrob Agents Chemother, 2017, 61(1): e01962–16.[66]Sun P, Bi ZW, Nilsson M, et al. Occurrence of blaKPC-2, blaCTX-M and mcr-1 in Enterobacteriaceae from well water in rural China.Antimicrob Agents Chemother, 2017, 61(4): e02569–16.[67]Cohen NR, Lobritz MA, Collins JJ. Microbial persistence and the road to drug resistance.Cell Host Microbe, 2013, 13(6): 632–642.DOI: 10.1016/j.chom.2013.05.009[68]Levin-Reisman I, Ronin I, Gefen O, et al. Antibiotic tolerance facilitates the evolution of resistance.Science, 2017, 355(6327): 826–830.DOI: 10.1126/science.aaj2191[69]Horne D, Tomasz A. Tolerant response of Streptococcus sanguis to Beta-Lactams and other cell wall inhibitors.Antimicrob AgentsChemother, 1977, 11(5): 888–896.DOI: 10.1128/AAC.11.5.888[70]Evans DJ, Allison DG, Brown MRW, et al. Susceptibility of Pseudomonas aeruginosa and Escherichia coli biofilms towards ciprofloxacin: effect of specific growth rate.J Antimicrob Chemother, 1991, 27(2): 177–184.DOI: 10.1093/jac/27.2.177[71]Li YF, Zhang Y. PhoU is a persistence switch involved in persister formation and tolerance to multiple antibiotics and stresses in Escherichia coli.Antimicrob Agents Chemother, 2007, 51(6): 2092–2099.DOI: 10.1128/AAC.00052-07[72]Ma C, Sim S, Shi WL, et al. Energy production genes sucB and ubiF are involved in persister survival and tolerance to multiple antibiotics and stresses in Escherichia coli.FEMS Microbiol Lett, 2010, 303(1): 33–40.DOI: 10.1111/fml.2010.303.issue-1[73]Allison KR, Brynildsen MP, Collins JJ. Heterogeneous bacterial persisters and engineering approaches to eliminate them.Curr Opin Microbiol, 2011, 14(5): 593–598.DOI: 10.1016/j.mib.2011.09.002[74]Harrison JJ, Wade WD, Akierman S, et al. The chromosomal toxin gene yafQ is a determinant of multidrug tolerance for Escherichia coli growing in a biofilm.Antimicrob Agents Chemother, 2009, 53(6): 2253–2258.DOI: 10.1128/AAC.00043-09[75]Li JH, Ji L, Shi WL, et al. Trans-translation mediates tolerance to multiple antibiotics and stresses in Escherichia coli.J Antimicrob Chemother, 2013, 68(11): 2477–2481.DOI: 10.1093/jac/dkt231[76]Olson ME, Ceri H, Morck DW, et al. Biofilm bacteria: formation and comparative susceptibility to antibiotics.Canad J Vet Res, 2002, 66(2): 86–92.[77]Möker N, Dean CR, Tao JS. Pseudomonas aeruginosa increases formation of multidrug-tolerant persister cells in response to quorum-sensing signaling molecules.J Bacteriol, 2010, 192(7): 1946–1955.DOI: 10.1128/JB.01231-09[78]Hammerum AM, Heuer OE, Emborg HD, et al. Danish integrated antimicrobial resistance monitoring and research program.Emerg Infect Dis, 2007, 13(11): 1632–1639.[79]Paulin A, Schneider M, Dron F, et al. Pharmacokinetic/pharmacodynamic evaluation of marbofloxacin as a single injection for Pasteurellaceae respiratory infections in cattle using population pharmacokinetics and Monte Carlo simulations.J Vet Pharmacol Ther, 2017, 41(1): 39–50.[80]Vallé M, Schneider M, Galland D, et al. Pharmacokinetic and pharmacodynamic testing of marbofloxacin administered as a single injection for the treatment of bovine respiratory disease.J Vet Pharmacol Ther, 2012, 35(6): 519–528.DOI: 10.1111/jvp.2012.35.issue-6[81]Landoni MF, Comas W, Mucci N, et al. Enantiospecific pharmacokinetics and pharmacodynamics of ketoprofen in sheep.J Vet Pharmacol Ther, 1999, 22(6): 349–359.DOI: 10.1046/j.1365-2885.1999.00209.x[82]Xiao X, Sun J, Yang T, et al. Pharmacokinetic/pharmacodynamic profiles of tiamulin in an experimental intratracheal infection model of Mycoplasma gallisepticum.Front Vet Sci, 2016, 3: 75.[83]Guo CN, Liao XP, Wang MR, et al. In Vivo Pharmacodynamics of cefquinome in a neutropenic mouse thigh model of Streptococcus suis serotype 2 at varied initial inoculum sizes.Antimicrob Agents Chemother, 2016, 60(2): 1114–1120.DOI: 10.1128/AAC.02065-15[84]Yu Y, Zhou YF, Chen MR, et al. In Vivo pharmacokinetics/pharmacodynamics of cefquinome in an experimental mouse model of Staphylococcus aureus mastitis following intramammary infusion.PLoS ONE, 2016, 11(5): e0156273.DOI: 10.1371/journal.pone.0156273[85]Zhou YF, Shi W, Yu Y, et al. Pharmacokinetic/pharmacodynamic correlation of cefquinome against experimental catheter-associated biofilm infection due to Staphylococcus aureus.Front Microbiol, 2015, 6: 1513.[86]Zhou YF, Tao MT, He YZ, et al. In Vivo bioluminescent monitoring of therapeutic efficacy and pharmacodynamic target assessment of antofloxacin against Escherichia coli in a neutropenic murine thigh infection model.Antimicrob Agents Chemother, 2017, 62(1): e01281–17.[87]Zhao DH, Zhou YF, Yu Y, et al. Integration of pharmacokinetic and pharmacodynamic indices of valnemulin in broiler chickens after a single intravenous and intramuscular administration.Vet J, 2014, 201(1): 109–115.DOI: 10.1016/j.tvjl.2014.05.010[88]Shan Q, Wang J, Yang F, et al. Pharmacokinetic/pharmacodynamic relationship of marbofloxacin against Pasteurella multocida in a tissue-cage model in yellow cattle.J Vet Pharmacol Ther, 2014, 37(3): 222–230.DOI: 10.1111/jvp.2014.37.issue-3[89]Luo J, Yang QE, Yang YY, et al. Design, synthesis, and structure-activity relationship studies of novel pleuromutilin derivatives having a piperazine ring.Chem Biol Drug Des, 2016, 88(5): 699–709.DOI: 10.1111/cbdd.2016.88.issue-5[90]Murphy SK, Zeng MS, Herzon SB. A modular and enantioselective synthesis of the pleuromutilin antibiotics.Science, 2017, 356(6341): 956–959.DOI: 10.1126/science.aan0003[91]Lowrence RC, Raman T, Makala HV, et al. Dithiazole thione derivative as competitive NorA efflux pump inhibitor to curtail multi drug resistant clinical isolate of MRSA in a zebrafish infection model.Appl Microbiol Biotechnol, 2016, 100(21): 9265–9281.DOI: 10.1007/s00253-016-7759-2[92]Mahmood HY, Jamshidi S, Sutton JM, et al. Current advances in developing inhibitors of bacterial multidrug efflux pumps.Curr Med Chem, 2016, 23(10): 1062–1081.DOI: 10.2174/0929867323666160304150522[93]Aoki N, Tateda K, Kikuchi Y, et al. Efficacy of colistin combination therapy in a mouse model of pneumonia caused by multidrug-resistant Pseudomonas aeruginosa.J Antimicrob Chemother, 2009, 63(3): 534–542.DOI: 10.1093/jac/dkn530[94]Gordon NC, Png K, Wareham DW. Potent synergy and sustained bactericidal activity of a vancomycin-colistin combination versus multidrug-resistant strains of Acinetobacter baumannii.Antimicrob Agents Chemother, 2010, 54(12): 5316–5322.DOI: 10.1128/AAC.00922-10[95]Peng B, Su YB, Li H, et al. Exogenous alanine and/or glucose plus kanamycin kills antibiotic-resistant bacteria.Cell Metab, 2015, 21(2): 249–261.DOI: 10.1016/j.cmet.2015.01.008[96]DeNap JCB, Thomas JR, Musk DJ, et al. Combating drug-resistant bacteria: small molecule mimics of plasmid incompatibility as antiplasmid compounds.J Am Chem Soc, 2004, 126(47): 15402–15404.DOI: 10.1021/ja044207u[97]Moritz EM, Hergenrother PJ. Toxin-antitoxin systems are ubiquitous and plasmid-encoded in vancomycin-resistant enterococci.Proc Natl Acad Sci USA, 2007, 104(1): 311–316.DOI: 10.1073/pnas.0601168104[98]Fernandez-Lopez R, Machón C, Longshaw CM, et al. Unsaturated fatty acids are inhibitors of bacterial conjugation.Microbiology, 2005, 151(11): 3517–3526.DOI: 10.1099/mic.0.28216-0[99]Jamal M, Hussain T, Rajanna Das C, et al. Isolation and characterization of a Myoviridae MJ1 bacteriophage against multi-drug resistant Escherichia coli 3.Jundishapur J Microbiol, 2015, 8(11): e25917.[100]Francis DH, Willgohs JA. Evaluation of a live avirulent Escherichia coli vaccine for K88+, LT+ enterotoxigenic colibacillosis in weaned pigs.Am J Vet Res, 1991, 52(7): 1051–1055.[101]Ruan XS, Liu M, Casey TA, et al. A tripartite fusion, FaeG-FedF-LT192A2:B, of enterotoxigenic Escherichia coli (ETEC) elicits antibodies that neutralize cholera toxin, inhibit adherence of K88 (F4) and F18 fimbriae, and protect pigs against K88ac/heat-labile toxin infection.Clin Vaccine Immunol, 2011, 18(10): 1593–1599.DOI: 10.1128/CVI.05120-11[102]Kalia VC, Purohit HJ. Quenching the quorum sensing system: potential antibacterial drug targets.Crit Rev Microbiol, 2011, 37(2): 121–140.DOI: 10.3109/1040841X.2010.532479[103]Resch A, Rosenstein R, Nerz C, et al. Differential gene expression profiling of Staphylococcus aureus cultivated under biofilm and planktonic conditions.Appl Environ Microbiol, 2005, 71(5): 2663–2676.DOI: 10.1128/AEM.71.5.2663-2676.2005[104]Feng HH, Xiang H, Zhang JY, et al. Genome-wide transcriptional profiling of the response of Staphylococcus aureus to cryptotanshinone.J Biomed Biotechnol, 2009, 2009: 617509.[105]Qiu JZ, Xiang H, Hu C, et al. Subinhibitory concentrations of farrerol reduce α-toxin expression in Staphylococcus aureus.FEMS Microbiol Lett, 2011, 315(2): 129–133.DOI: 10.1111/fml.2011.315.issue-2

相关知识

研究揭示动物间帮助行为的神经生物学机制—小柯机器人—科学网
Probiotics for treatment of bacterial diarrhea in pet animals
Effects of nutrient and water regimes on lodging resistance of rice不同养分和水分管理模式对水稻抗倒伏能力的影响
动物健康
传统宠物主义:养宠人身份、宠物类型与宠物特质对宠物道德地位的影响
全球宠物癌症治疗市场规模、份额、成长分析,依治疗(化疗、放射治疗)、按动物(狗、猫)、按应用(淋巴瘤、肥大细胞癌)
雅思写作范文:过于保护动物
益生菌、益生元您该怎么选? 益生元如何有助于宠物
2021年6月英语四级写作高分范文60篇:宠物
健康食品和无麸质食品的客户行为调查Consumer behaviours towards functional andglutenfreefoods

网址: Towards understanding antibiotic resistance in animals https://m.mcbbbk.com/newsview436398.html

所属分类:萌宠日常
上一篇: 科学研究一定要用动物做实验吗?
下一篇: 中国农业大学科研院 科技论文 动