首页 > 分享 > 深度学习训练营之鸟类识别

深度学习训练营之鸟类识别

深度学习训练营之鸟类识别

原文链接 环境介绍 前置工作 设置GPU 导入数据并进行查找 数据处理 可视化数据 配置数据集 残差网络的介绍 构建残差网络 模型训练 开始编译 结果可视化 训练样本和测试样本 预测

原文链接

本文为365天深度学习训练营 中的学习记录博客 参考文章:365天深度学习训练营-第P8周:实现鸟类识别 原作者:K同学啊|接辅导、项目定制

环境介绍

语言环境:Python3.9.13 编译器:jupyter notebook 深度学习环境:TensorFlow2

前置工作

设置GPU

使用gpu可以加快运行速度

#设置gpu import tensorflow as tf gpus = tf.config.list_physical_devices("GPU") if gpus: tf.config.experimental.set_memory_growth(gpus[0], True) #设置GPU显存用量按需使用 tf.config.set_visible_devices([gpus[0]],"GPU")

导入数据并进行查找

# 导入数据 import matplotlib.pyplot as plt # 支持中文 plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签 plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号 import os,PIL # 设置随机种子尽可能使结果可以重现 import numpy as np np.random.seed(1) # 设置随机种子尽可能使结果可以重现 import tensorflow as tf tf.random.set_seed(1) from tensorflow import keras from tensorflow.keras import layers,models import pathlib

查看数据

data_dir = "D:/BaiduNetdiskDownload/第8天-没有加密版本/第8天/bird_photos" data_dir = pathlib.Path(data_dir) #3. 查看数据 image_count = len(list(data_dir.glob('*/*'))) print("图片总数为:",image_count)

我们可以知道一共有565张照片

数据处理

文件夹 数量 Bananaquit 166 张 Black Throated Bushtiti 111 张 Black skimmer 122 张 Cockatoo 166张

对数据进行加载操作
使用image_dataset_from_directory方法将磁盘中的数据加载到tf.data.Dataset中

batch_size = 8 img_height = 224 img_width = 224

""" 关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789 """ train_ds = tf.keras.preprocessing.image_dataset_from_directory( data_dir, validation_split=0.2, subset="training", seed=123, image_size=(img_height, img_width), batch_size=batch_size) #使用当中的452张进行训练

使用当中的452张进行训练

""" 关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789 """ val_ds = tf.keras.preprocessing.image_dataset_from_directory( data_dir, validation_split=0.2, subset="validation", seed=123, image_size=(img_height, img_width), batch_size=batch_size)

使用113张进行预测操作

# 使用class_name输出数据集的标签 class_names = train_ds.class_names print(class_names)

可视化数据

plt.figure(figsize=(10, 5)) # 图形的宽为10高为5 plt.suptitle("无你想你的学习训练") for images, labels in train_ds.take(1): for i in range(8): ax = plt.subplot(2, 4, i + 1) plt.imshow(images[i].numpy().astype("uint8")) plt.title(class_names[labels[i]]) plt.axis("off")

plt.imshow(images[4].numpy().astype("uint8"))


再次对数据进行检查

for image_batch, labels_batch in train_ds: print(image_batch.shape) print(labels_batch.shape) break

Image_batch是形状的张量(8, 224, 224, 3)。这是一批形状240x240x3的8张图片(最后一维指的是彩色通道RGB)。 Label_batch是形状(8,)的张量,这些标签对应8张图片

配置数据集

shuffle() :打乱数据,关于此函数的详细介绍可以参考:https://zhuanlan.zhihu.com/p/42417456 prefetch() :预取数据,加速运行,其详细介绍可以参考我前两篇文章,里面都有讲解。 cache() :将数据集缓存到内存当中,加速运行

AUTOTUNE = tf.data.AUTOTUNE train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE) val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)

残差网络的介绍

残差网络是为了解决神经网络隐藏层过多时,而引起的网络退化问题。退化(degradation)问题是指:当网络隐藏层变多时,网络的准确度达到饱和然后急剧退化,而且这个退化不是由于过拟合引起的。

构建残差网络

from keras import layers from keras.layers import Input,Activation,BatchNormalization,Flatten from keras.layers import Dense,Conv2D,MaxPooling2D,ZeroPadding2D,AveragePooling2D from keras.models import Model def identity_block(input_tensor, kernel_size, filters, stage, block): filters1, filters2, filters3 = filters name_base = str(stage) + block + '_identity_block_' x = Conv2D(filters1, (1, 1), name=name_base + 'conv1')(input_tensor) x = BatchNormalization(name=name_base + 'bn1')(x) x = Activation('relu', name=name_base + 'relu1')(x) x = Conv2D(filters2, kernel_size,padding='same', name=name_base + 'conv2')(x) x = BatchNormalization(name=name_base + 'bn2')(x) x = Activation('relu', name=name_base + 'relu2')(x) x = Conv2D(filters3, (1, 1), name=name_base + 'conv3')(x) x = BatchNormalization(name=name_base + 'bn3')(x) x = layers.add([x, input_tensor] ,name=name_base + 'add') x = Activation('relu', name=name_base + 'relu4')(x) return x def conv_block(input_tensor, kernel_size, filters, stage, block, strides=(2, 2)): filters1, filters2, filters3 = filters res_name_base = str(stage) + block + '_conv_block_res_' name_base = str(stage) + block + '_conv_block_' x = Conv2D(filters1, (1, 1), strides=strides, name=name_base + 'conv1')(input_tensor) x = BatchNormalization(name=name_base + 'bn1')(x) x = Activation('relu', name=name_base + 'relu1')(x) x = Conv2D(filters2, kernel_size, padding='same', name=name_base + 'conv2')(x) x = BatchNormalization(name=name_base + 'bn2')(x) x = Activation('relu', name=name_base + 'relu2')(x) x = Conv2D(filters3, (1, 1), name=name_base + 'conv3')(x) x = BatchNormalization(name=name_base + 'bn3')(x) shortcut = Conv2D(filters3, (1, 1), strides=strides, name=res_name_base + 'conv')(input_tensor) shortcut = BatchNormalization(name=res_name_base + 'bn')(shortcut) x = layers.add([x, shortcut], name=name_base+'add') x = Activation('relu', name=name_base+'relu4')(x) return x def ResNet50(input_shape=[224,224,3],classes=1000): img_input = Input(shape=input_shape) x = ZeroPadding2D((3, 3))(img_input) x = Conv2D(64, (7, 7), strides=(2, 2), name='conv1')(x) x = BatchNormalization(name='bn_conv1')(x) x = Activation('relu')(x) x = MaxPooling2D((3, 3), strides=(2, 2))(x) x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1)) x = identity_block(x, 3, [64, 64, 256], stage=2, block='b') x = identity_block(x, 3, [64, 64, 256], stage=2, block='c') x = conv_block(x, 3, [128, 128, 512], stage=3, block='a') x = identity_block(x, 3, [128, 128, 512], stage=3, block='b') x = identity_block(x, 3, [128, 128, 512], stage=3, block='c') x = identity_block(x, 3, [128, 128, 512], stage=3, block='d') x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a') x = identity_block(x, 3, [256, 256, 1024], stage=4, block='b') x = identity_block(x, 3, [256, 256, 1024], stage=4, block='c') x = identity_block(x, 3, [256, 256, 1024], stage=4, block='d') x = identity_block(x, 3, [256, 256, 1024], stage=4, block='e') x = identity_block(x, 3, [256, 256, 1024], stage=4, block='f') x = conv_block(x, 3, [512, 512, 2048], stage=5, block='a') x = identity_block(x, 3, [512, 512, 2048], stage=5, block='b') x = identity_block(x, 3, [512, 512, 2048], stage=5, block='c') x = AveragePooling2D((7, 7), name='avg_pool')(x) x = Flatten()(x) x = Dense(classes, activation='softmax', name='fc1000')(x) model = Model(img_input, x, name='resnet50') # 加载预训练模型 model.load_weights("resnet50_weights_tf_dim_ordering_tf_kernels.h5") return model model = ResNet50() model.summary()

模型训练

开始编译

损失函数(loss):用于衡量模型在训练期间的准确率。 优化器(optimizer):决定模型如何根据其看到的数据和自身的损失函数进行更新。 指标(metrics):用于监控训练和测试步骤。以下示例使用了准确率,即被正确分类的图像的比率

# 设置优化器,我这里改变了学习率。 opt = tf.keras.optimizers.Adam(learning_rate=1e-7) model.compile(optimizer="adam", loss='sparse_categorical_crossentropy', metrics=['accuracy'])

开始训练

epochs = 10 history = model.fit( train_ds, validation_data=val_ds, epochs=epochs )

结果可视化

训练样本和测试样本

acc = history.history['accuracy'] val_acc = history.history['val_accuracy'] loss = history.history['loss'] val_loss = history.history['val_loss'] epochs_range = range(epochs) plt.figure(figsize=(12, 4)) plt.subplot(1, 2, 1) plt.suptitle("无你想你的学习空间") plt.plot(epochs_range, acc, label='Training Accuracy') plt.plot(epochs_range, val_acc, label='Validation Accuracy') plt.legend(loc='lower right') plt.title('Training and Validation Accuracy') plt.subplot(1, 2, 2) plt.plot(epochs_range, loss, label='Training Loss') plt.plot(epochs_range, val_loss, label='Validation Loss') plt.legend(loc='upper right') plt.title('Training and Validation Loss') plt.show()

预测

# 保存模型 model.save('model/my_model.h5')

# 加载模型 new_model = keras.models.load_model('model/my_model.h5')

# 采用加载的模型(new_model)来看预测结果 plt.figure(figsize=(10, 5)) # 图形的宽为10高为5 plt.suptitle("无你想你的学习空间") for images, labels in val_ds.take(1): for i in range(8): ax = plt.subplot(2, 4, i + 1) # 显示图片 plt.imshow(images[i].numpy().astype("uint8")) # 需要给图片增加一个维度 img_array = tf.expand_dims(images[i], 0) # 使用模型预测图片中的人物 predictions = new_model.predict(img_array) plt.title(class_names[np.argmax(predictions)]) plt.axis("off")

转载:https://blog.csdn.net/qq_62904883/article/details/128581845

相关知识

深度学习训练营之鸟类识别
鸟类声音识别技术综述:从传统方法到深度学习
【计算机科学】【2019.03】基于深度学习的动物识别
365天深度学习训练营
基于深度学习的鸟类声音识别的研究与应用
基于深度学习的鸟类声音识别系统
R语言深度学习玩转宠物世界:宠物识别与品种分类
深度学习识别宠物猫狗分类模型
面向鸟鸣声识别任务的深度学习技术
PyTorch深度学习:猫狗情感识别

网址: 深度学习训练营之鸟类识别 https://m.mcbbbk.com/newsview645195.html

所属分类:萌宠日常
上一篇: 如何了解猫语
下一篇: 图音识鸟app安卓版下载