首页 > 分享 > python基于轻量级YOLOv5的生猪检测+状态识别分析系统

python基于轻量级YOLOv5的生猪检测+状态识别分析系统

在我之前的一篇文章中有过生猪检测盒状态识别相关的项目实践,如下:

《Python基于yolov4实现生猪检测及状态识》

感兴趣的话可以自行移步阅读,这里主要是基于同样的技术思想,将原始体积较大的yolov4模型做无缝替换,使用当下比较优秀的轻量级yolov5s模型来实现目标检测,后续基于状态识别模型实现生猪状态的识别,首先看下效果图,如下所示:

 简单看下数据集:

 YOLO格式标注文件如下所示:

 实例标注内容如下所示:

0 0.062744 0.558594 0.046387 0.16276

0 0.077637 0.701497 0.0625 0.126953

0 0.107422 0.805664 0.053711 0.087891

0 0.129883 0.798503 0.063477 0.138672

0 0.151367 0.811198 0.073242 0.123698

0 0.22876 0.842773 0.085449 0.115234

0 0.283936 0.794922 0.066895 0.227865

0 0.333496 0.773438 0.06543 0.197917

0 0.362793 0.812826 0.078125 0.166016

0 0.394043 0.848958 0.108398 0.167969

0 0.468994 0.878255 0.131348 0.105469

0 0.720459 0.733398 0.068848 0.19987

0 0.86499 0.628255 0.096191 0.091146

0 0.922607 0.434245 0.040527 0.164062

0 0.87915 0.301107 0.046387 0.146484

0 0.907715 0.297852 0.035156 0.120443

0 0.870117 0.166992 0.047852 0.108724

0 0.829102 0.145182 0.058594 0.097656

0 0.79126 0.264974 0.112793 0.135417

0 0.684326 0.127279 0.104004 0.078776

0 0.668213 0.068685 0.10498 0.064453

0 0.616699 0.142578 0.104492 0.174479

0 0.49292 0.151042 0.162598 0.098958

0 0.437256 0.417643 0.202637 0.212891

0 0.387207 0.329753 0.104492 0.210286

0 0.300049 0.403971 0.069824 0.222005

0 0.195312 0.514974 0.12207 0.227865

0 0.222168 0.451497 0.092773 0.133464

VOC格式标注文件如下所示:

 实例标注数据如下所示:

<annotation>

<folder>DATASET</folder>

<filename>images/20190621141536.jpg</filename>

<source>

<database>The DATASET Database</database>

<annotation>DATASET</annotation>

<image>DATASET</image>

</source>

<owner>

<name>YMGZS</name>

</owner>

<size>

<width>2048</width>

<height>1536</height>

<depth>3</depth>

</size>

<segmented>0</segmented>

<object>

<name>pig</name>

<pose>Unspecified</pose>

<truncated>0</truncated>

<difficult>0</difficult>

<bndbox>

<xmin>775</xmin>

<ymin>1268</ymin>

<xmax>1072</xmax>

<ymax>1406</ymax>

</bndbox>

</object>

<object>

<name>pig</name>

<pose>Unspecified</pose>

<truncated>0</truncated>

<difficult>0</difficult>

<bndbox>

<xmin>507</xmin>

<ymin>1279</ymin>

<xmax>785</xmax>

<ymax>1434</ymax>

</bndbox>

</object>

<object>

<name>pig</name>

<pose>Unspecified</pose>

<truncated>0</truncated>

<difficult>0</difficult>

<bndbox>

<xmin>464</xmin>

<ymin>1130</ymin>

<xmax>728</xmax>

<ymax>1333</ymax>

</bndbox>

</object>

<object>

<name>pig</name>

<pose>Unspecified</pose>

<truncated>0</truncated>

<difficult>0</difficult>

<bndbox>

<xmin>361</xmin>

<ymin>1197</ymin>

<xmax>507</xmax>

<ymax>1366</ymax>

</bndbox>

</object>

<object>

<name>pig</name>

<pose>Unspecified</pose>

<truncated>0</truncated>

<difficult>0</difficult>

<bndbox>

<xmin>226</xmin>

<ymin>1164</ymin>

<xmax>399</xmax>

<ymax>1302</ymax>

</bndbox>

</object>

<object>

<name>pig</name>

<pose>Unspecified</pose>

<truncated>0</truncated>

<difficult>0</difficult>

<bndbox>

<xmin>161</xmin>

<ymin>1171</ymin>

<xmax>321</xmax>

<ymax>1311</ymax>

</bndbox>

</object>

<object>

<name>pig</name>

<pose>Unspecified</pose>

<truncated>0</truncated>

<difficult>0</difficult>

<bndbox>

<xmin>168</xmin>

<ymin>1025</ymin>

<xmax>314</xmax>

<ymax>1175</ymax>

</bndbox>

</object>

<object>

<name>pig</name>

<pose>Unspecified</pose>

<truncated>0</truncated>

<difficult>0</difficult>

<bndbox>

<xmin>104</xmin>

<ymin>973</ymin>

<xmax>185</xmax>

<ymax>1161</ymax>

</bndbox>

</object>

<object>

<name>pig</name>

<pose>Unspecified</pose>

<truncated>0</truncated>

<difficult>0</difficult>

<bndbox>

<xmin>87</xmin>

<ymin>754</ymin>

<xmax>166</xmax>

<ymax>987</ymax>

</bndbox>

</object>

<object>

<name>pig</name>

<pose>Unspecified</pose>

<truncated>0</truncated>

<difficult>0</difficult>

<bndbox>

<xmin>68</xmin>

<ymin>641</ymin>

<xmax>178</xmax>

<ymax>736</ymax>

</bndbox>

</object>

<object>

<name>pig</name>

<pose>Unspecified</pose>

<truncated>0</truncated>

<difficult>0</difficult>

<bndbox>

<xmin>70</xmin>

<ymin>580</ymin>

<xmax>179</xmax>

<ymax>656</ymax>

</bndbox>

</object>

<object>

<name>pig</name>

<pose>Unspecified</pose>

<truncated>0</truncated>

<difficult>0</difficult>

<bndbox>

<xmin>71</xmin>

<ymin>425</ymin>

<xmax>218</xmax>

<ymax>592</ymax>

</bndbox>

</object>

<object>

<name>pig</name>

<pose>Unspecified</pose>

<truncated>0</truncated>

<difficult>0</difficult>

<bndbox>

<xmin>266</xmin>

<ymin>335</ymin>

<xmax>487</xmax>

<ymax>440</ymax>

</bndbox>

</object>

<object>

<name>pig</name>

<pose>Unspecified</pose>

<truncated>0</truncated>

<difficult>0</difficult>

<bndbox>

<xmin>464</xmin>

<ymin>321</ymin>

<xmax>673</xmax>

<ymax>454</ymax>

</bndbox>

</object>

<object>

<name>pig</name>

<pose>Unspecified</pose>

<truncated>0</truncated>

<difficult>0</difficult>

<bndbox>

<xmin>530</xmin>

<ymin>508</ymin>

<xmax>768</xmax>

<ymax>717</ymax>

</bndbox>

</object>

<object>

<name>pig</name>

<pose>Unspecified</pose>

<truncated>0</truncated>

<difficult>0</difficult>

<bndbox>

<xmin>709</xmin>

<ymin>521</ymin>

<xmax>909</xmax>

<ymax>847</ymax>

</bndbox>

</object>

<object>

<name>pig</name>

<pose>Unspecified</pose>

<truncated>0</truncated>

<difficult>0</difficult>

<bndbox>

<xmin>787</xmin>

<ymin>209</ymin>

<xmax>1011</xmax>

<ymax>549</ymax>

</bndbox>

</object>

<object>

<name>pig</name>

<pose>Unspecified</pose>

<truncated>0</truncated>

<difficult>0</difficult>

<bndbox>

<xmin>949</xmin>

<ymin>64</ymin>

<xmax>1261</xmax>

<ymax>233</ymax>

</bndbox>

</object>

<object>

<name>pig</name>

<pose>Unspecified</pose>

<truncated>0</truncated>

<difficult>0</difficult>

<bndbox>

<xmin>1045</xmin>

<ymin>237</ymin>

<xmax>1387</xmax>

<ymax>387</ymax>

</bndbox>

</object>

<object>

<name>pig</name>

<pose>Unspecified</pose>

<truncated>0</truncated>

<difficult>0</difficult>

<bndbox>

<xmin>1254</xmin>

<ymin>66</ymin>

<xmax>1476</xmax>

<ymax>218</ymax>

</bndbox>

</object>

<object>

<name>pig</name>

<pose>Unspecified</pose>

<truncated>0</truncated>

<difficult>0</difficult>

<bndbox>

<xmin>1295</xmin>

<ymin>135</ymin>

<xmax>1495</xmax>

<ymax>235</ymax>

</bndbox>

</object>

<object>

<name>pig</name>

<pose>Unspecified</pose>

<truncated>0</truncated>

<difficult>0</difficult>

<bndbox>

<xmin>1480</xmin>

<ymin>104</ymin>

<xmax>1661</xmax>

<ymax>197</ymax>

</bndbox>

</object>

<object>

<name>pig</name>

<pose>Unspecified</pose>

<truncated>0</truncated>

<difficult>0</difficult>

<bndbox>

<xmin>1649</xmin>

<ymin>142</ymin>

<xmax>1740</xmax>

<ymax>264</ymax>

</bndbox>

</object>

<object>

<name>pig</name>

<pose>Unspecified</pose>

<truncated>0</truncated>

<difficult>0</difficult>

<bndbox>

<xmin>1772</xmin>

<ymin>341</ymin>

<xmax>1891</xmax>

<ymax>560</ymax>

</bndbox>

</object>

<object>

<name>pig</name>

<pose>Unspecified</pose>

<truncated>0</truncated>

<difficult>0</difficult>

<bndbox>

<xmin>1828</xmin>

<ymin>553</ymin>

<xmax>1933</xmax>

<ymax>772</ymax>

</bndbox>

</object>

<object>

<name>pig</name>

<pose>Unspecified</pose>

<truncated>0</truncated>

<difficult>0</difficult>

<bndbox>

<xmin>1810</xmin>

<ymin>782</ymin>

<xmax>1939</xmax>

<ymax>977</ymax>

</bndbox>

</object>

<object>

<name>pig</name>

<pose>Unspecified</pose>

<truncated>0</truncated>

<difficult>0</difficult>

<bndbox>

<xmin>1364</xmin>

<ymin>902</ymin>

<xmax>1576</xmax>

<ymax>1216</ymax>

</bndbox>

</object>

<object>

<name>pig</name>

<pose>Unspecified</pose>

<truncated>0</truncated>

<difficult>0</difficult>

<bndbox>

<xmin>1342</xmin>

<ymin>1016</ymin>

<xmax>1514</xmax>

<ymax>1247</ymax>

</bndbox>

</object>

</annotation>

默认使用轻量级的yolov5s模型来进行模型的开发,默认训练100次epoch,结果详情如下所示:

【F1值曲线】

 【PR曲线】

 【Precision和Recall曲线】

 数据可视化:

 Batch计算实例:

 可视化界面推理实例如下:

 目标检测+状态识别在界面中做了集成实现。

相关知识

鸟类领域超大规模检测实践,基于YOLOv8轻量级检测模型开发构建超大规模生活场景下500种鸟类检测识别分析系统
如何制作并使用 基于深度学习Yolov5的鸟类识别检测系统
基于yolov8、yolov5的鸟类检测系统(含UI界面、数据集、训练好的模型、Python代码)
毕业设计:基于深度学习的遛狗牵绳检测系统 人工智能 python
基于yolov8、yolov5的鸟类分类系统(含UI界面、训练好的模型、Python代码、数据集)
基于YOLO 的宠物狗牵绳检测系统的设计与实现
基于YOLOv9的空中飞鸟识别检测系统(附项目源码和数据集下载)
基于深度学习的高精度狗狗检测识别系统(PyTorch+Pyside6+YOLOv5模型)
基于深度学习的鸟类检测识别系统(含UI界面,Python代码)
助力不文明行文识别,基于YOLOv7融合RepVGG的遛狗牵绳行为检测识别分析系统

网址: python基于轻量级YOLOv5的生猪检测+状态识别分析系统 https://m.mcbbbk.com/newsview721123.html

所属分类:萌宠日常
上一篇: 公猪调教十大方法
下一篇: 《最强蜗牛》彩虹猪基因试炼攻略