1. lisv2 测试 rateplan
2. rtm 获取不同hotel下的房间的room的相似性,得出score,根据attribute去判断是否和得出的similarity score一致
roomtypesimilarity, mostsimilarityroom, fullranking 排序
3.abs测试
3. prefill 抓取hotel获取room信息,训练抓取模型
if __name__ == '__main__':
start = datetime.datetime.now()
SCRIPT = 'script'
EXCEL_PATH_ONE = 'C:PythonRelatedProjectcomparecompare.xlsx'
MANUAL = 'manual'
EXCEL_PATH_RESULT= 'C:PythonRelatedProjectcomparecompare.xlsx'
dataFrame_script = pd.read_excel(EXCEL_PATH_ONE, sheet_name=SCRIPT)
dataFrame_Manual = pd.read_excel(EXCEL_PATH_RESULT, sheet_name=MANUAL)
#replace ' ' with 0
dataFrame_script['RoomSize'].replace('', 0, inplace=True)
dataFrame_script['RoomSize'].replace(np.nan, 0, inplace=True)
dataFrame_script['RoomSize'].replace('unknown', 0, inplace=True)
dataFrame_Manual['RoomSize'].replace('', 0, inplace=True)
dataFrame_Manual['RoomSize'].replace(np.nan, 0, inplace=True)
dataFrame_Manual['RoomSize'].replace('unknown', 0, inplace=True)
dataFrame_Manual['RoomType'].replace('', 0, inplace=True)
dataFrame_Manual['BedType'].replace('', 0, inplace=True)
dataFrame_Manual['Smoking'].replace('', 0, inplace=True)
#dataFrame_Result.drop(['ExtraAttributes', 'NumberOfRoomType'], axis=1, inplace=True)
distance_result_list = list()
count_script = 0
for index, row_script in dataFrame_script.iterrows():
#check if the new row of script is equal to the last one of manual,if not, it's a new hotel,begin with the 1st room of this hotel
if temp_var != row_script['URL']:
count_script = 0
#when one roomtype of hotel from script finished compare with all roomtype of the same hotel from manual,go to next roomtype
count_manual = 0
count_script += 1
#compared is used to set default not to compare
compared = False
#while one hotel's compare finished, break inner loop
for index_m, row_manual in dataFrame_Manual.iterrows():
#if row['URL'].strip() == rowr['URL'].strip():
if row_script['URL'] == row_manual['URL']:
#set compared to true means this row has been compared
compared = True
#erery time will set temp_var to the current row of manual
temp_var = row_manual['URL']
count_manual += 1
# df = pd.DataFrame(columns=['URL', 'RoomName', 'RoomType', 'RoomClass', 'RoomSize', 'BedType', 'Wheelchair', 'Smoking', 'View'])
df = pd.DataFrame(columns=['URL', 'RoomType', 'RoomClass', 'RoomSize', 'BedType', 'Smoking', 'View'])
df.loc[0] = row_script
df.loc[1] = row_manual
compareobjects = str(count_script) + ' : ' + str(count_manual)
print(str(index) +" " + str(index_m) +" " + row_script['URL'] + " " + compareobjects)
distance_result_list.extend(getDistance(df, 0, compareobjects))
#finished comparing the current row of script with all the roomtype of the same hotel from manual
else:
count_manual = 0
#break inner loop when finish comparing the current row of script with all the roomtype from the same hotel of manual
if (compared == True) and (count_manual == 0):
break
df_distance_result = pd.DataFrame(np.array(distance_result_list), columns=['script', 'manual', 'difference', 'compareobjects'])
# compare result write into a excel file
now = time.strftime("%Y-%m-%d-%H_%M_%S", time.localtime(time.time()))
writer = pd.ExcelWriter('C:PythonRelatedProjectcomparedistance_' + now + '.xls')
df_distance_result.to_excel(writer)
writer.save()
end = datetime.datetime.now()
print('Running time: %s Seconds' % (end - start))
pass
相关知识
data for exp
7k7k地心世界————宠物背包
派珀的宠物咖啡馆(修改使用金币和灯泡不会减少)下载0.49.2最新版
Write of 379 bytes failed with errno=28 No space left on device (500 Internal Server Error)
Python毕业设计基于django的宠物领养宠物商城服务预约系统
宠物记
Python毕业设计基于django的宠物领养饲养交流管理平台 领养+周边商城
计算机毕业设计基于Python的猫狗宠物展示系统
桌面电子宠物
U优宠物
网址: data for exp https://m.mcbbbk.com/newsview142270.html
上一篇: 亚马逊大卖公式:独立站+亚马逊= |
下一篇: 角球=进球! |