Progress in research on the adaptability of microorganisms to extremely cold environments
[1] Priscu JC, Johnson L, Christner BC. Earth's icy biosphere. Washington, D.C.: ASM Press, 2004. [2] Xiang SR, Shang TC, Chen Y, Jing ZF, Yao TD. Changes in diversity and biomass of bacteria along a shallow snow pit from Kuytun 51 Glacier, Tianshan Mountains, China. Journal of Geophysical Research Atmospheres, 2009, 114(G4): G04008. [3] Jungblut AD, Lovejoy C, Vincent WF. Global distribution of cyanobacterial ecotypes in the cold biosphere. The ISME Journal, 2010, 4(2): 191-202. DOI:10.1038/ismej.2009.113 [4] An L, Chen Y, Xiang SR, Shang TC, Tian LD. Differences in community composition of bacteria in four deep ice sheets in Western China. Biogeosciences Discussions, 2010, 7(1): 1167. [5] Boetius A, Anesio AM, Deming JW, Mikucki JA, Rapp JZ. Microbial ecology of the cryosphere: sea ice and glacial habitats. Nature Reviews Microbiology, 2015, 13(11): 677-690. DOI:10.1038/nrmicro3522 [6] Delgado-Baquerizo M, Oliverio AM, Brewer TE, Benavent-González A, Eldridge DJ, Bardgett RD, Maestre FT, Singh BK, Fierer N. A global atlas of the dominant bacteria found in soil. Science, 2018, 359(6373): 320-325. DOI:10.1126/science.aap9516 [7] Panikov NS, Flanagan PW, Oechel WC, Mastepanov MA, Christensen TR. Microbial activity in soils frozen to below −39 ℃. Soil Biology and Biochemistry, 2006, 38(4): 785-794. DOI:10.1016/j.soilbio.2005.07.004 [8] Shen L, Yao TD, Liu YQ, Jiao NZ, Kang SC, Xu BQ, Zhang SH, Liu XB. Downward-shifting temperature range for the growth of snow-bacteria on glaciers of the Tibetan Plateau. Geomicrobiology Journal, 2014, 31(9): 779-787. DOI:10.1080/01490451.2014.891418 [9] Scholze C, Jørgensen BB, Røy H. Psychrophilic properties of sulfate-reducing bacteria in Arctic marine sediments. Limnology and Oceanography, 2021, 66(S1): S293-S302. [10] Shen L, Liu YQ, Allen MA, Xu BQ, Wang NL, Williams TJ, Wang F, Zhou YG, Liu Q, Cavicchioli R. Linking genomic and physiological characteristics of psychrophilic Arthrobacter to metagenomic data to explain global environmental distribution. Microbiome, 2021, 9(1): 136. DOI:10.1186/s40168-021-01084-z [11] Cary SC, McDonald IR, Barrett JE, Cowan DA. On the rocks: the microbiology of Antarctic dry valley soils. Nature Reviews Microbiology, 2010, 8(2): 129-138. DOI:10.1038/nrmicro2281 [12] Cavicchioli R. Microbial ecology of Antarctic aquatic systems. Nature Reviews Microbiology, 2015, 13(11): 691-706. DOI:10.1038/nrmicro3549 [13] Jansson JK, Taş N. The microbial ecology of permafrost. Nature Reviews Microbiology, 2014, 12(6): 414-425. DOI:10.1038/nrmicro3262 [14] Smith HJ, Foster RA, McKnight DM, Lisle JT, Littmann S, Kuypers MMM, Foreman CM. Microbial formation of labile organic carbon in Antarctic glacial environments. Nature Geoscience, 2017, 10(5): 356-359. DOI:10.1038/ngeo2925 [15] Cauvy-Fraunié S, Dangles O. A global synthesis of biodiversity responses to glacier retreat. Nature Ecology & Evolution, 2019, 3(12): 1675-1685. [16] Yarzábal LA. Perspectives for using glacial and periglacial microorganisms for plant growth promotion at low temperatures. Applied Microbiology and Biotechnology, 2020, 104(8): 3267-3278. DOI:10.1007/s00253-020-10468-4 [17] Kasana RC, Pandey CB. Exiguobacterium: an overview of a versatile genus with potential in industry and agriculture. Critical Reviews in Biotechnology, 2018, 38(1): 141-156. DOI:10.1080/07388551.2017.1312273 [18] Bowman JP, McCammon SA, Brown MV, Nichols DS, McMeekin TA. Diversity and association of psychrophilic bacteria in Antarctic Sea ice. Applied and Environmental Microbiology, 1997, 63(8): 3068-3078. DOI:10.1128/aem.63.8.3068-3078.1997 [19] Morita RY. Psychrophilic bacteria. Bacteriological Reviews, 1975, 39(2): 144-167. DOI:10.1128/br.39.2.144-167.1975 [20] Gounot AM. Effects of temperature on the growth of psychrophilic bacteria from glaciers. Canadian Journal of Microbiology, 1976, 22(6): 839-846. DOI:10.1139/m76-121 [21] Cavicchioli R. On the concept of a psychrophile. The ISME Journal, 2016, 10(4): 793-795. DOI:10.1038/ismej.2015.160 [22] Farrell J, Rose A. Temperature effects on microorganisms. Annual Review of Microbiology, 1967, 21: 101-120. DOI:10.1146/annurev.mi.21.100167.000533 [23] D'Amico S, Collins T, Marx JC, Feller G, Gerday C. Psychrophilic microorganisms: challenges for life. EMBO Reports, 2006, 7(4): 385-389. DOI:10.1038/sj.embor.7400662 [24] Liu YQ, Priscu JC, Yao TD, Vick-Majors TJ, Michaud AB, Sheng L. Culturable bacteria isolated from seven high-altitude ice cores on the Tibetan Plateau. Journal of Glaciology, 2019, 65(249): 29-38. DOI:10.1017/jog.2018.86 [25] Shen L, Liu Y, Xu B, Wang N, Zhao H, Liu X, Liu F. Comparative genomic analysis reveals the environmental impacts on two Arcticibacter strains including sixteen Sphingobacteriaceae species. Scientific Reports, 2017, 7: 2055. DOI:10.1038/s41598-017-02191-4 [26] Rivkina EM, Friedmann EI, McKay CP, Gilichinsky DA. Metabolic activity of permafrost bacteria below the freezing point. Applied and Environmental Microbiology, 2000, 66(8): 3230-3233. DOI:10.1128/AEM.66.8.3230-3233.2000 [27] Panikov NS, Sizova MV. Growth kinetics of microorganisms isolated from Alaskan soil and permafrost in solid media frozen down to −35 ℃. FEMS Microbiology Ecology, 2007, 59(2): 500-512. DOI:10.1111/j.1574-6941.2006.00210.x [28] Gadkari PS, McGuinness LR, Männistö MK, Kerkhof LJ, Häggblom MM. Arctic tundra soil bacterial communities active at subzero temperatures detected by stable isotope probing. FEMS Microbiology Ecology, 2019, 96(2): fiz192. [29] Rodrigues DF, Tiedje JM. Coping with our cold planet. Applied and Environmental Microbiology, 2008, 74(6): 1677-1686. DOI:10.1128/AEM.02000-07 [30] Piette F, D'Amico S, Mazzucchelli G, Danchin A, Leprince P, Feller G. Life in the cold: a proteomic study of cold-repressed proteins in the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125. Applied and Environmental Microbiology, 2011, 77(11): 3881-3883. DOI:10.1128/AEM.02757-10 [31] Morgan-Kiss RM, Priscu JC, Pocock T, Gudynaite-Savitch L, Huner NPA. Adaptation and acclimation of photosynthetic microorganisms to permanently cold environments. Microbiology and Molecular Biology Reviews: MMBR, 2006, 70(1): 222-252. DOI:10.1128/MMBR.70.1.222-252.2006 [32] Tehei M, Zaccai G. Adaptation to extreme environments: macromolecular dynamics in complex systems. Biochimica et Biophysica Acta: BBA - General Subjects, 2005, 1724(3): 404-410. DOI:10.1016/j.bbagen.2005.05.007 [33] Hinnebusch J, Tilly K. Linear plasmids and chromosomes in bacteria. Molecular Microbiology, 1993, 10(5): 917-922. DOI:10.1111/j.1365-2958.1993.tb00963.x [34] Galtier N, Lobry JR. Relationships between genomic G+C content, RNA secondary structures, and optimal growth temperature in prokaryotes. Journal of Molecular Evolution, 1997, 44(6): 632-636. DOI:10.1007/PL00006186 [35] Meyer MM. Revisiting the relationships between genomic G+C content, RNA secondary structures, and optimal growth temperature. Journal of Molecular Evolution, 2021, 89(3): 165-171. DOI:10.1007/s00239-020-09974-w [36] Liu Q, Song WZ, Zhou YG, Dong XZ, Xin YH. Phenotypic divergence of thermotolerance: molecular basis and cold adaptive evolution related to intrinsic DNA flexibility of glacier-inhabiting Cryobacterium strains. Environmental Microbiology, 2020, 22(4): 1409-1420. DOI:10.1111/1462-2920.14957 [37] Wang HC, Susko E, Roger AJ. On the correlation between genomic G+C content and optimal growth temperature in prokaryotes: data quality and confounding factors. Biochemical and Biophysical Research Communications, 2006, 342(3): 681-684. DOI:10.1016/j.bbrc.2006.02.037 [38] Khachane AN, Timmis KN, Dos Santos VAPM. Uracil content of 16S rRNA of thermophilic and psychrophilic prokaryotes correlates inversely with their optimal growth temperatures. Nucleic Acids Research, 2005, 33(13): 4016-4022. DOI:10.1093/nar/gki714 [39] Sato Y, Kimura H. Temperature-dependent expression of different guanine-plus-cytosine content 16S rRNA genes in Haloarcula strains of the class Halobacteria. Antonie Van Leeuwenhoek, 2019, 112(2): 187-201. DOI:10.1007/s10482-018-1144-3 [40] Cavicchioli R. Cold-adapted archaea. Nature Reviews Microbiology, 2006, 4(5): 331-343. DOI:10.1038/nrmicro1390 [41] Saunders NFW, Thomas T, Curmi PMG, Mattick JS, Kuczek E, Slade R, Davis J, Franzmann PD, Boone D, Rusterholtz K, Feldman R, Gates C, Bench S, Sowers K, Kadner K, Aerts A, Dehal P, Detter C, Glavina T, Lucas S, Richardson P, Larimer F, Hauser L, Land M, Cavicchioli R. Mechanisms of thermal adaptation revealed from the genomes of the Antarctic archaea Methanogenium frigidum and Methanococcoides burtonii. Genome Research, 2003, 13(7): 1580-1588. DOI:10.1101/gr.1180903 [42] Siddiqui KS, Williams TJ, Wilkins D, Yau S, Allen MA, Brown MV, Lauro FM, Cavicchioli R. Psychrophiles. Annual Review of Earth and Planetary Sciences, 2013, 41: 87-115. DOI:10.1146/annurev-earth-040610-133514 [43] Siddiqui KS, Poljak A, Guilhaus M, De Francisci D, Curmi PMG, Feller G, D'Amico S, Gerday C, Uversky VN, Cavicchioli R. Role of lysine versus arginine in enzyme cold-adaptation: modifying lysine to Homo-arginine stabilizes the cold-adapted α-amylase from Pseudoalteramonas haloplanktis. Proteins: Structure, Function, and Bioinformatics, 2006, 64(2): 486-501. DOI:10.1002/prot.20989 [44] Huston AL, Haeggström JZ, Feller G. Cold adaptation of enzymes: structural, kinetic and microcalorimetric characterizations of an aminopeptidase from the Arctic psychrophile Colwellia psychrerythraea and of human leukotriene A4 hydrolase. Biochimica et Biophysica Acta: BBA-Proteins and Proteomics, 2008, 1784(11): 1865-1872. DOI:10.1016/j.bbapap.2008.06.002 [45] Michaux C, Massant J, Kerff F, Frère JM, Docquier JD, Vandenberghe I, Samyn B, Pierrard A, Feller G, Charlier P, Van Beeumen J, Wouters J. Crystal structure of a cold-adapted class C β-lactamase. The FEBS Journal, 2008, 275(8): 1687-1697. DOI:10.1111/j.1742-4658.2008.06324.x [46] Bauvois C, Jacquamet L, Huston AL, Borel F, Feller G, Ferrer JL. Crystal structure of the cold-active aminopeptidase from Colwellia psychrerythraea, a close structural homologue of the human bifunctional leukotriene A4 hydrolase. Journal of Biological Chemistry, 2008, 283(34): 23315-23325. DOI:10.1074/jbc.M802158200 [47] Sonan GK, Receveur-Brechot V, Duez C, Aghajari N, Czjzek M, Haser R, Gerday C. The linker region plays a key role in the adaptation to cold of the cellulase from an Antarctic bacterium. The Biochemical Journal, 2007, 407(2): 293-302. DOI:10.1042/BJ20070640 [48] Aghajari N, Van Petegem F, Villeret V, Chessa JP, Gerday C, Haser R, Van Beeumen J. Crystal structures of a psychrophilic metalloprotease reveal new insights into catalysis by cold-adapted proteases. Proteins, 2003, 50(4): 636-647. DOI:10.1002/prot.10264 [49] Leiros HKS, Pey AL, Innselset M, Moe EL, Leiros I, Steen IH, Martinez A. Structure of phenylalanine hydroxylase from Colwellia psychrerythraea 34H, a monomeric cold active enzyme with local flexibility around the active site and high overall stability. Journal of Biological Chemistry, 2007, 282(30): 21973-21986. DOI:10.1074/jbc.M610174200 [50] Paredes DI, Watters K, Pitman DJ, Bystroff C, Dordick JS. Comparative void-volume analysis of psychrophilic and mesophilic enzymes: structural bioinformatics of psychrophilic enzymes reveals sources of core flexibility. BMC Structural Biology, 2011, 11: 42. DOI:10.1186/1472-6807-11-42 [51] Jung SK, Jeong DG, Lee MS, Lee JK, Kim HK, Ryu SE, Park BC, Kim JH, Kim SJ. Structural basis for the cold adaptation of psychrophilic M37 lipase from Photobacterium lipolyticum. Proteins, 2008, 71(1): 476-484. DOI:10.1002/prot.21884 [52] Cramer P. AlphaFold2 and the future of structural biology. Nature Structural & Molecular Biology, 2021, 28(9): 704-705. [53] Graumann P, Marahiel MA. Some like it cold: response of microorganisms to cold shock. Archives of Microbiology, 1996, 166(5): 293-300. DOI:10.1007/s002030050386 [54] Horn G, Hofweber R, Kremer W, Kalbitzer HR. Structure and function of bacterial cold shock proteins. Cellular and Molecular Life Sciences: CMLS, 2007, 64(12): 1457-1470. DOI:10.1007/s00018-007-6388-4 [55] Chen ZJ, Yu HY, Li LY, Hu SN, Dong XZ. The genome and transcriptome of a newly described psychrophilic archaeon, Methanolobus psychrophilus R15, reveal its cold adaptive characteristics. Environmental Microbiology Reports, 2012, 4(6): 633-641. [56] Gao HC, Wang Y, Liu XD, Yan TF, Wu LY, Alm E, Arkin A, Thompson DK, Zhou JZ. Global transcriptome analysis of the heat shock response of Shewanella oneidensis. Journal of Bacteriology, 2004, 186(22): 7796-7803. DOI:10.1128/JB.186.22.7796-7803.2004 [57] Frank S, Schmidt F, Klockgether J, Davenport CF, Gesell Salazar M, Völker U, Tümmler B. Functional genomics of the initial phase of cold adaptation of Pseudomonas putida KT2440. FEMS Microbiology Letters, 2011, 318(1): 47-54. DOI:10.1111/j.1574-6968.2011.02237.x [58] Casanueva A, Tuffin M, Cary C, Cowan DA. Molecular adaptations to psychrophily: the impact of 'omic' technologies. Trends in Microbiology, 2010, 18(8): 374-381. DOI:10.1016/j.tim.2010.05.002 [59] Dammel CS, Noller HF. Suppression of a cold-sensitive mutation in 16S rRNA by overexpression of a novel ribosome-binding factor, RbfA. Genes & Development, 1995, 9(5): 626-637. [60] Brandi A, Piersimoni L, Feto NA, Spurio R, Alix JH, Schmidt F, Gualerzi CO. Translation initiation factor IF2 contributes to ribosome assembly and maturation during cold adaptation. Nucleic Acids Research, 2019, 47(9): 4652-4662. DOI:10.1093/nar/gkz188 [61] Deming JW. Psychrophiles and polar regions. Current Opinion in Microbiology, 2002, 5(3): 301-309. DOI:10.1016/S1369-5274(02)00329-6 [62] Chintalapati S, Kiran MD, Shivaji S. Role of membrane lipid fatty acids in cold adaptation. Cellular and Molecular Biology: Noisy Le Grand, France, 2004, 50(5): 631-642. [63] Guan ZQ, Tian B, Perfumo A, Goldfine H. The polar lipids of Clostridium psychrophilum, an anaerobic psychrophile. Biochimica et Biophysica Acta: BBA-Molecular and Cell Biology of Lipids, 2013, 1831(6): 1108-1112. [64] Nichols DS, Miller MR, Davies NW, Goodchild A, Raftery M, Cavicchioli R. Cold adaptation in the Antarctic archaeon Methanococcoides burtonii involves membrane lipid unsaturation. Journal of Bacteriology, 2004, 186(24): 8508-8515. DOI:10.1128/JB.186.24.8508-8515.2004 [65] Lauro FM, Tran K, Vezzi A, Vitulo N, Valle G, Bartlett DH. Large-scale transposon mutagenesis of Photobacterium profundum SS9 reveals new genetic loci important for growth at low temperature and high pressure. Journal of Bacteriology, 2008, 190(5): 1699-1709. DOI:10.1128/JB.01176-07 [66] Cacace G, Mazzeo MF, Sorrentino A, Spada V, Malorni A, Siciliano RA. Proteomics for the elucidation of cold adaptation mechanisms in Listeria monocytogenes. Journal of Proteomics, 2010, 73(10): 2021-2030. DOI:10.1016/j.jprot.2010.06.011 [67] Bakermans C, Tollaksen SL, Giometti CS, Wilkerson C, Tiedje JM, Thomashow MF. Proteomic analysis of Psychrobacter cryohalolentis K5 during growth at subzero temperatures. Extremophiles: Life Under Extreme Conditions, 2007, 11(2): 343-354. DOI:10.1007/s00792-006-0042-1 [68] Durack J, Ross T, Bowman JP. Characterisation of the transcriptomes of genetically diverse Listeria monocytogenes exposed to hyperosmotic and low temperature conditions reveal global stress-adaptation mechanisms. PLoS One, 2013, 8(9): e73603. DOI:10.1371/journal.pone.0073603 [69] Dieser M, Greenwood M, Foreman CM. Carotenoid pigmentation in Antarctic heterotrophic bacteria as a strategy to withstand environmental stresses. Arctic, Antarctic, and Alpine Research, 2010, 42(4): 396-405. DOI:10.1657/1938-4246-42.4.396 [70] Chattopadhyay MK. Mechanism of bacterial adaptation to low temperature. Journal of Biosciences, 2006, 31(1): 157-165. DOI:10.1007/BF02705244 [71] Shen L, Liu YQ, Wang NL, Jiao NZ, Xu BQ, Liu XB. Variation with depth of the abundance, diversity and pigmentation of culturable bacteria in a deep ice core from the Yuzhufeng Glacier, Tibetan Plateau. Extremophiles: Life Under Extreme Conditions, 2018, 22(1): 29-38. DOI:10.1007/s00792-017-0973-8 [72] Johler S, Stephan R, Hartmann I, Kuehner KA, Lehner A. Genes involved in yellow pigmentation of Cronobacter sakazakii ES5 and influence of pigmentation on persistence and growth under environmental stress. Applied and Environmental Microbiology, 2010, 76(4): 1053-1061. DOI:10.1128/AEM.01420-09 [73] Kandror O, DeLeon A, Goldberg AL. Trehalose synthesis is induced upon exposure of Escherichia coli to cold and is essential for viability at low temperatures. PNAS, 2002, 99(15): 9727-9732. DOI:10.1073/pnas.142314099 [74] Phadtare S, Inouye M. Genome-wide transcriptional analysis of the cold shock response in wild-type and cold-sensitive, quadruple-csp-deletion strains of Escherichia coli. Journal of Bacteriology, 2004, 186(20): 7007-7014. DOI:10.1128/JB.186.20.7007-7014.2004 [75] Celik Y, Drori R, Pertaya-Braun N, Altan A, Barton T, Bar-Dolev M, Groisman A, Davies PL, Braslavsky I. Microfluidic experiments reveal that antifreeze proteins bound to ice crystals suffice to prevent their growth. PNAS, 2013, 110(4): 1309-1314. DOI:10.1073/pnas.1213603110 [76] Kawahara H. The structures and functions of ice crystal-controlling proteins from bacteria. Journal of Bioscience and Bioengineering, 2002, 94(6): 492-496. DOI:10.1016/S1389-1723(02)80185-2 [77] Feng S, Powell SM, Wilson R, Bowman JP. Extensive gene acquisition in the extremely psychrophilic bacterial species Psychroflexus torquis and the link to sea-ice ecosystem specialism. Genome Biology and Evolution, 2014, 6(1): 133-148. DOI:10.1093/gbe/evt209 [78] Nichols CAM, Guezennec J, Bowman JP. Bacterial exopolysaccharides from extreme marine environments with special consideration of the southern ocean, sea ice, and deep-sea hydrothermal vents: a review. Marine Biotechnology: New York, NY, 2005, 7(4): 253-271. DOI:10.1007/s10126-004-5118-2 [79] Qin GK, Zhu LZ, Chen XL, Wang PG, Zhang YZ. Structural characterization and ecological roles of a novel exopolysaccharide from the deep-sea psychrotolerant bacterium Pseudoalteromonas sp. SM9913. Microbiology: Reading, England, 2007, 153(Pt 5): 1566-1572. [80] De Los Ríos A, Wierzchos J, Sancho LG, Ascaso C. Exploring the physiological state of continental Antarctic endolithic microorganisms by microscopy. FEMS Microbiology Ecology, 2004, 50(3): 143-152. DOI:10.1016/j.femsec.2004.06.010 [81] Collins T, Margesin R. Psychrophilic lifestyles: mechanisms of adaptation and biotechnological tools. Applied Microbiology and Biotechnology, 2019, 103(7): 2857-2871. DOI:10.1007/s00253-019-09659-5 [82] Junge KR, Eicken H, Swanson BD, Deming JW. Bacterial incorporation of leucine into protein down to-20 degrees C with evidence for potential activity in sub-eutectic saline ice formations. Cryobiology, 2006, 52(3): 417-429. DOI:10.1016/j.cryobiol.2006.03.002 [83] Ewert M, Deming JW. Selective retention in saline ice of extracellular polysaccharides produced by the cold-adapted marine bacterium Colwellia psychrerythraea strain 34H. Annals of Glaciology, 2011, 52(57): 111-117. DOI:10.3189/172756411795931868 [84] Krembs C, Eicken H, Deming JW. Exopolymer alteration of physical properties of sea ice and implications for ice habitability and biogeochemistry in a warmer Arctic. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(9): 3653-3658. DOI:10.1073/pnas.1100701108 [85] Aslam SN, Cresswell-Maynard T, Thomas DN, Underwood GJC. Production and characterization of the intra- and extracellular carbohydrates and polymeric substances (EPS) of three sea-ice diatom species, and evidence for a cryoprotective role for EPS. Journal of Phycology, 2012, 48(6): 1494-1509. DOI:10.1111/jpy.12004 [86] De Maayer P, Anderson D, Cary C, Cowan DA. Some like it cold: understanding the survival strategies of psychrophiles. EMBO Reports, 2014, 15(5): 508-517. DOI:10.1002/embr.201338170 [87] Aruoma OI, Kaur H, Halliwell B. Oxygen free radicals and human diseases. Journal of the Royal Society of Health, 1991, 111(5): 172-177. DOI:10.1177/146642409111100506 [88] Houée-Levin C, Bobrowski K. The use of the methods of radiolysis to explore the mechanisms of free radical modifications in proteins. Journal of Proteomics, 2013, 92: 51-62. DOI:10.1016/j.jprot.2013.02.014 [89] Halgand F, Houée-Lévin C, Weik M, Madern D. Remote oxidative modifications induced by oxygen free radicals modify T/R allosteric equilibrium of a hyperthermophilic lactate dehydrogenase. Journal of Structural Biology, 2020, 210(2): 107478. DOI:10.1016/j.jsb.2020.107478 [90] Ebara S, Shigemori Y. Alkali-tolerant high-activity catalase from a thermophilic bacterium and its overexpression in Escherichia coli. Protein Expression and Purification, 2008, 57(2): 255-260. DOI:10.1016/j.pep.2007.09.015 [91] Moustafa DA, Jain N, Sriranganathan N, Vemulapalli R. Identification of a single-nucleotide insertion in the promoter region affecting the sodC promoter activity in Brucella neotomae. PLoS One, 2010, 5(11): e14112. DOI:10.1371/journal.pone.0014112 [92] Ballal A, Manna AC. Control of thioredoxin reductase gene (trxB) transcription by SarA in Staphylococcus aureus. Journal of Bacteriology, 2010, 192(1): 336-345. DOI:10.1128/JB.01202-09 [93] Médigue C, Krin E, Pascal G, Barbe V, Bernsel A, Bertin PN, Cheung F, Cruveiller S, D'Amico S, Duilio A, Fang G, Feller G, Ho C, Mangenot S, Marino G, Nilsson J, Parrilli E, Rocha EPC, Rouy Z, Sekowska A, Tutino ML, Vallenet D, Von Heijne G, Danchin A. Coping with cold: the genome of the versatile marine Antarctica bacterium Pseudoalteromonas haloplanktis TAC125. Genome Research, 2005, 15(10): 1325-1335. DOI:10.1101/gr.4126905 [94] Xie Z, Jian HH, Jin Z, Xiao X. Enhancing the adaptability of the deep-sea bacterium Shewanella piezotolerans WP3 to high pressure and low temperature by experimental evolution under H2O2 stress. Applied and Environmental Microbiology, 2018, 84(5): e02342-e02317. [95] Kloska A, Cech GM, Sadowska M, Krause K, Szalewska-Pałasz A, Olszewski P. Adaptation of the marine bacterium Shewanella baltica to low temperature stress. International Journal of Molecular Sciences, 2020, 21(12): 4338. DOI:10.3390/ijms21124338 [96] Aliyu H, De Maayer P, Cowan D. The genome of the Antarctic polyextremophile Nesterenkonia sp. AN1 reveals adaptive strategies for survival under multiple stress conditions. FEMS Microbiology Ecology, 2016, 92(4): fiw032. DOI:10.1093/femsec/fiw032 [97] Singh P, Kapse N, Gowdaman V, Tsuji M, Singh SM, Dhakephalkar PK. Comparative genomic analysis of Arctic permafrost bacterium Nesterenkonia sp. PF2B19 to gain insights into its cold adaptation tactic and diverse biotechnological potential. Sustainability, 2021, 13(8): 4590. DOI:10.3390/su13084590 [98] Limsuwun K, Jones PG. Spermidine acetyltransferase is required to prevent spermidine toxicity at low temperatures in Escherichia coli. Journal of Bacteriology, 2000, 182(19): 5373-5380. DOI:10.1128/JB.182.19.5373-5380.2000 [99] Koh HY, Park H, Lee JH, Han SJ, Sohn YC, Lee SG. Proteomic and transcriptomic investigations on cold-responsive properties of the psychrophilic Antarctic bacterium Psychrobacter sp. PAMC 21119 at subzero temperatures. Environmental Microbiology, 2017, 19(2): 628-644. DOI:10.1111/1462-2920.13578 [100] Kumar S, Suyal DC, Yadav A, Shouche Y, Goel R. Psychrophilic Pseudomonas helmanticensis proteome under simulated cold stress. Cell Stress & Chaperones, 2020, 25(6): 1025-1032. [101] Tribelli PM, López NI. Reporting key features in cold-adapted bacteria. Life: Basel, Switzerland, 2018, 8(1): 8. [102] Allen MA, Lauro FM, Williams TJ, Burg D, Siddiqui KS, De Francisci D, Chong KWY, Pilak O, Chew HH, de Maere MZ, Ting L, Katrib M, Ng C, Sowers KR, Galperin MY, Anderson IJ, Ivanova N, Dalin E, Martinez M, Lapidus A, Hauser L, Land M, Thomas T, Cavicchioli R. The genome sequence of the psychrophilic archaeon, Methanococcoides burtonii: the role of genome evolution in cold adaptation. The ISME Journal, 2009, 3(9): 1012-1035. DOI:10.1038/ismej.2009.45 [103] Liu YQ, Shen L, Zeng YH, Xing TT, Xu BQ, Wang NL. Genomic insights of Cryobacterium isolated from ice core reveal genome dynamics for adaptation in glacier. Frontiers in Microbiology, 2020, 11: 1530. DOI:10.3389/fmicb.2020.01530 [104] Koonin EV, Makarova KS, Wolf YI. Evolution of microbial genomics: conceptual shifts over a quarter century. Trends in Microbiology, 2021, 29(7): 582-592. DOI:10.1016/j.tim.2021.01.005 [105] Xiang SR, Yao TD, An LZ, Xu BL, Wang JX. 16S rRNA sequences and differences in bacteria isolated from the Muztag Ata glacier at increasing depths. Applied and Environmental Microbiology, 2005, 71(8): 4619-4627. DOI:10.1128/AEM.71.8.4619-4627.2005 [106] Zhang XF, Yao TD, Tian LD, Xu SJ, An LZ. Phylogenetic and physiological diversity of bacteria isolated from Puruogangri ice core. Microbial Ecology, 2008, 55(3): 476-488. DOI:10.1007/s00248-007-9293-3 [107] Miller MB, Bassler BL. Quorum sensing in bacteria. Annual Review of Microbiology, 2001, 55: 165-199. DOI:10.1146/annurev.micro.55.1.165 [108] Liu Q, Li W, Liu D, Li L, Li J, Lv N, Liu F, Zhu B, Zhou Y, Xin Y, Dong X. Light stimulates anoxic and oligotrophic growth of glacial Flavobacterium strains that produce zeaxanthin. The ISME Journal, 2021, 15(6): 1844-1857. DOI:10.1038/s41396-020-00891-w [109] Hutchins DA, Jansson JK, Remais JV, Rich VI, Singh BK, Trivedi P. Climate change microbiology—problems and perspectives. Nature Reviews Microbiology, 2019, 17(6): 391-396. DOI:10.1038/s41579-019-0178-5 [110] Qin DH, Zhou BT, Xiao CD. Progress in studies of cryospheric changes and their impacts on climate of China. Acta Meteorologica Sinica, 2014, 72(5): 869-879. (in Chinese)
秦大河, 周波涛, 效存德. 冰冻圈变化及其对中国气候的影响. 气象学报, 2014, 72(5): 869-879. [111] Yao TD, Wu GJ, Xu BQ, Wang WC, Gao J, An BS. Asian water tower change and its impacts. Bulletin of Chinese Academy of Sciences, 2019, 34(11): 1203-1209. (in Chinese)
姚檀栋, 邬光剑, 徐柏青, 王伟财, 高晶, 安宝晟. 亚洲水塔变化与影响. 中国科学院院刊, 2019, 34(11): 1203-1209. [112] Cavicchioli R, Ripple WJ, Timmis KN, Azam F, Bakken LR, Baylis M, Behrenfeld MJ, Boetius A, Boyd PW, Classen AT, Crowther TW, Danovaro R, Foreman CM, Huisman J, Hutchins DA, Jansson JK, Karl DM, Koskella B, Mark Welch DB, Martiny JBH, Moran MA, Orphan VJ, Reay DS, Remais JV, Rich VI, Singh BK, Stein LY, Stewart FJ, Sullivan MB, Van Oppen MJH, Weaver SC, Webb EA, Webster NS. Scientists' warning to humanity: microorganisms and climate change. Nature Reviews Microbiology, 2019, 17(9): 569-586. DOI:10.1038/s41579-019-0222-5 [113] Xue K, Yuan MM, Shi ZJ, Qin Y, Deng Y, Cheng L, Wu L, He Z, Van Nostrand JD, Bracho R, Natali S, Schuur EAG, Luo C, Konstantinidis KT, Wang Q, Cole JR, Tiedje JM, Luo Y, Zhou J. Tundra soil carbon is vulnerable to rapid microbial decomposition under climate warming. Nature Climate Change, 2016, 6(6): 595-600. DOI:10.1038/nclimate2940 [114] Song YY, Song CC, Ren JS, Ma XY, Tan WW, Wang XW, Gao JL, Hou AX. Short-term response of the soil microbial abundances and enzyme activities to experimental warming in a boreal peatland in northeast China. Sustainability, 2019, 11(3): 590. DOI:10.3390/su11030590 [115] Song YY, Jiang L, Song CC, Wang XW, Ma XY, Zhang H, Tan WW, Gao JL, Hou AX. Microbial abundance and enzymatic activity from tussock and shrub soil in permafrost peatland after 6-year warming. Ecological Indicators, 2021, 126: 107589. DOI:10.1016/j.ecolind.2021.107589 [116] Johnston ER, Hatt JK, He ZL, Wu LY, Guo X, Luo YQ, Schuur EAG, Tiedje JM, Zhou JZ, Konstantinidis KT. Responses of tundra soil microbial communities to half a decade of experimental warming at two critical depths. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(30): 15096-15105. DOI:10.1073/pnas.1901307116 [117] Bhatia RK, Ullah S, Hoque MZ, Ahmad I, Yang YH, Bhatt AK, Bhatia SK. Psychrophiles: a source of cold-adapted enzymes for energy efficient biotechnological industrial processes. Journal of Environmental Chemical Engineering, 2021, 9(1): 104607. DOI:10.1016/j.jece.2020.104607 [118] Nielsen PH, Skagerlind P. Cost-neutral replacement of surfactants with enzymes-a shortcut to environmental improvement for laundry washing. HPC Today, 2007, 4: 3-7. [119] Kuddus M, Ramteke PW. Cold-active extracellular alkaline protease from an alkaliphilic Stenotrophomonas maltophilia: production of enzyme and its industrial applications. Canadian Journal of Microbiology, 2009, 55(11): 1294-1301. DOI:10.1139/W09-089 [120] Farooq S, Nazir R, Ganai SA, Ganai BA. Isolation and characterization of a new cold-active protease from psychrotrophic bacteria of Western Himalayan glacial soil. Scientific Reports, 2021, 11: 12768. DOI:10.1038/s41598-021-92197-w [121] Furhan J, Nissar J. Cold-adapted serine metalloprotease from Serratia DLCP2: purification, characterization and industrial potential. Applied Biochemistry and Microbiology, 2021, 57(1): 40-47. DOI:10.1134/S0003683821010087 [122] Dhaulaniya AS, Balan BJ, Kumar M, Agrawal PK, Singh DK. Cold survival strategies for bacteria, recent advancement and potential industrial applications. Archives of Microbiology, 2019, 201(1): 1-16. DOI:10.1007/s00203-018-1602-3 [123] Siddiqui KS. Some like it hot, some like it cold: temperature dependent biotechnological applications and improvements in extremophilic enzymes. Biotechnology Advances, 2015, 33(8): 1912-1922. DOI:10.1016/j.biotechadv.2015.11.001 [124] Wang Y, Gong CJ. Cold-adapted microorganisms and research progress of agricultural application. Biological Chemical Engineering, 2020, 6(5): 144-147. (in Chinese)
王奕, 宫春杰. 低温微生物及其在农业生产中的应用研究进展. 生物化工, 2020, 6(5): 144-147. DOI:10.3969/j.issn.2096-0387.2020.05.041 [125] Selvakumar G, Kundu S, Joshi P, Nazim S, Gupta AD, Gupta HS. Growth promotion of wheat seedlings by Exiguobacterium acetylicum 1P (MTCC 8707) a cold tolerant bacterial strain from the Uttarakhand Himalayas. Indian Journal of Microbiology, 2010, 50(1): 50-56. DOI:10.1007/s12088-009-0024-y [126] Berríos G, Cabrera G, Gidekel M, Gutiérrez-Moraga A. Characterization of a novel Antarctic plant growth-promoting bacterial strain and its interaction with Antarctic hair grass (Deschampsia antarctica Desv). Polar Biology, 2013, 36(3): 349-362. DOI:10.1007/s00300-012-1264-6 [127] Yarzábal LA, Monserrate L, Buela L, Chica E. Antarctic Pseudomonas spp. promote wheat germination and growth at low temperatures. Polar Biology, 2018, 41(11): 2343-2354. DOI:10.1007/s00300-018-2374-6 [128] Bisht SC, Mishra PK, Joshi GK. Genetic and functional diversity among root-associated psychrotrophic Pseudomonad's isolated from the Himalayan plants. Archives of Microbiology, 2013, 195(9): 605-615. DOI:10.1007/s00203-013-0908-4 [129] Gesheva V. Production of antibiotics and enzymes by soil microorganisms from the windmill Islands region, Wilkes Land, East Antarctica. Polar Biology, 2010, 33(10): 1351-1357. DOI:10.1007/s00300-010-0824-x [130] Wu HJ, Gu Q, Xie YL, Lou ZY, Xue PQ, Fang L, Yu CJ, Jia DD, Huang GC, Zhu BC, Schneider A, Blom J, Lasch P, Borriss R, Gao XW. Cold-adapted Bacilli isolated from the Qinghai-Tibetan Plateau are able to promote plant growth in extreme environments. Environmental Microbiology, 2019, 21(9): 3505-3526. DOI:10.1111/1462-2920.14722
相关知识
Progress in research on the adaptability of microorganisms to extremely cold environments
Advances in Research on Adaptive Evolution of Native Animals of Tibetan Plateau
Research Progress on Environment Adaptation of Plateau Domestic Animals
犬最常见的三种呼吸系统疾病及自助治疗(The three most common respiratory diseases and self
Research progress on role of mast cells in irritable bowel syndrome
在街上,公园里经常看到宠物狗的粪便, 影响环境。 的翻译是:In the streets, the Park often see dog droppings, affect the environment. 中文翻译英文意思,翻译英语
Research progress in medicinal treatment of autism spectrum disorders
机器学习在动物行为分析中的应用研究进展
Gene edited animal models applied in human disease research
鸟类食性研究进展.pdf
网址: Progress in research on the adaptability of microorganisms to extremely cold environments https://m.mcbbbk.com/newsview289821.html