首页 > 分享 > Functional ecology of freshwater fish: research progress and prospects

Functional ecology of freshwater fish: research progress and prospects

[1] [2]

Cardinale B J, Duffy J E, Gonzalez A, Hooper D U, Perrings C, Venail P, Narwani A, Mace G M, Tilman D, Wardle D A, Kinzig A P, Daily G C, Loreau M, Grace J B, Larigauderie A, Srivastava D S, Naeem S. Biodiversity loss and its impact on humanity. Nature, 2012, 486(7401): 59-67. DOI:10.1038/nature11148

[3] [4]

Ricciardi A, Rasmussen J B. Extinction rates of North American freshwater fauna. Conservation Biology, 1999, 13(5): 1220-1222. DOI:10.1046/j.1523-1739.1999.98380.x

[5]

Groombridge B, Jenkins M D. Global Biodiversity:Earth's Living Resources in the 21st Century. Cambridge: World Conservation Press, 2000.

[6]

Sala O E, Stuart Chapin Ⅲ F, Armesto J J, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke L F, Jackson R B, Kinzig A, Leemans R, Lodge D M, Mooney H A, Oesterheld M, Poff N L, Sykes M T, Walker B H, Walker M, Wall D H. Global biodiversity scenarios for the year 2100. Science, 2000, 287(5459): 1770-1774. DOI:10.1126/science.287.5459.1770

[7]

Lundberg J G, Kottelat M, Smith G R, Stiassny M L J, Gill A C. So many fishes, so little time:an overview of recent ichthyological discovery in continental waters. Annals of the Missouri Botanical Garden, 2000, 87(1): 26-62. DOI:10.2307/2666207

[8]

Nelson J S. Fishes of the World. 4th ed. Hoboken, New Jersey: John Wiley & Sons, Inc., 2006: 1-622.

[9]

Dudgeon D, Arthington A H, Gessner M O, Kawabata Z I, Knowler D J, Lévêque C, Naiman R J, Prieur-Richard A H, Soto D, Stiassny M L J, Sullivan C A. Freshwater biodiversity:importance, threats, status and conservation challenges. Biological Reviews, 2006, 81(2): 163-182. DOI:10.1017/S1464793105006950

[10] [11] [12] [13] [14]

Mouillot D, Villéger S, Scherer-Lorenzen M, Mason N W H. Functional structure of biological communities predicts ecosystem multifunctionality. PLoS One, 2011, 6(3): e17476. DOI:10.1371/journal.pone.0017476

[15]

Díaz S, Lavorel S, de Bello F, Quétier F, Grigulis K, Robson T M. Incorporating plant functional diversity effects in ecosystem service assessments. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(52): 20684-20689. DOI:10.1073/pnas.0704716104

[16]

Villéger S, Miranda J R, Hernandez D F, Mouillot D. Low functional β-diversity despite high taxonomic β-diversity among tropical estuarine fish communities. PLoS One, 2012, 7(7): e40679. DOI:10.1371/journal.pone.0040679

[17]

Parravicini V, Villéger S, Mcclanahan T R, Arias-González J E, Bellwood D R, Belmaker J, Chabanet P, Floeter S R, Friedlander A M, Guilhaumon F, Vigliola L, Kulbicki M, Mouillot D. Global mismatch between species richness and vulnerability of reef fish assemblages. Ecology Letters, 2014, 17(9): 1101-1110. DOI:10.1111/ele.2014.17.issue-9

[18]

Violle C, Navas M L, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E. Let the concept of trait be functional!. Oikos, 2007, 116(5): 882-892. DOI:10.1111/oik.2007.116.issue-5

[19]

Winemiller K O, Fitzgerald D B, Bower L M, Pianka E R. Functional traits, convergent evolution, and periodic tables of niches. Ecology Letters, 2015, 18(8): 737-751. DOI:10.1111/ele.2015.18.issue-8

[20]

Menezes S, Baird D J, Soares A M V M. Beyond taxonomy:a review of macroinvertebrate trait-based community descriptors as tools for freshwater biomonitoring. Journal of Applied Ecology, 2010, 47(4): 711-719. DOI:10.1111/jpe.2010.47.issue-4

[21]

Lima A C, Wrona F J, Soares A M V M. Fish traits as an alternative tool for the assessment of impacted rivers. Reviews in Fish Biology and Fisheries, 2017, 27(1): 31-42. DOI:10.1007/s11160-016-9446-x

[22]

Petchey O L, Gaston K J. Functional diversity:back to basics and looking forward. Ecology Letter, 2006, 9(6): 741-758. DOI:10.1111/ele.2006.9.issue-6

[23]

Buisson L, Grenouillet G, Villéger S, Canal J, Laffaille P. Toward a loss of functional diversity in stream fish assemblages under climate change. Global Change Biology, 2013, 19(2): 387-400. DOI:10.1111/gcb.2012.19.issue-2

[24]

Maire E, Grenouillet G, Brosse S, Villéger S. How many dimensions are needed to accurately assess functional diversity? A pragmatic approach for assessing the quality of functional spaces. Global Ecology and Biogeography, 2015, 24(6): 728-740. DOI:10.1111/geb.2015.24.issue-6

[25]

Oliveira A G, Baumgartner M T, Gomes L C, Dias R M, Agostinho A A. Long-term effects of flow regulation by dams simplify fish functional diversity. Freshwater Biology, 2018, 63(3): 293-305. DOI:10.1111/fwb.2018.63.issue-3

[26]

Gower J C. Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika, 1966, 53(3/4): 325-338. DOI:10.2307/2333639

[27] [28]

Petchey O L, Gaston K J. Dendrograms and measuring functional diversity. Oikos, 2007, 116(8): 1422-1426. DOI:10.1111/oik.2007.116.issue-8

[29] [30]

Villéger S, Mason N W H, Mouillot D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology, 2008, 89(8): 2290-2301. DOI:10.1890/07-1206.1

[31]

Ricotta C, Szeidl L. Diversity partitioning of Rao's quadratic entropy. Theoretical Population Biology, 2009, 76(4): 299-302. DOI:10.1016/j.tpb.2009.10.001

[32]

Mason N W H, Mouillot D, Lee W G, Wilson J B. Functional richness, functional evenness and functional divergence:the primary components of functional diversity. Oikos, 2005, 111(1): 112-118. DOI:10.1111/oik.2005.111.issue-1

[33] [34]

Schleuter D, Daufresne M, Massol F, Argillier C. A user's guide to functional diversity indices. Ecological Monographs, 2010, 80(3): 469-484. DOI:10.1890/08-2225.1

[35]

Schleuter D, Daufresne M, Veslot J, Mason N W H, Lanoiselée C, Brosse S, Beauchard O, Argillier C. Geographic isolation and climate govern the functional diversity of native fish communities in European drainage basins. Global Ecology and Biogeography, 2012, 21(11): 1083-1095. DOI:10.1111/geb.2012.21.issue-11

[36]

de Bello F, Lavergne S, Meynard C N, Lepš J, Thuiller W. The partitioning of diversity:showing Theseus a way out of the labyrinth. Journal of Vegetation Science, 2010, 21(5): 992-1000. DOI:10.1111/jvs.2010.21.issue-5

[37]

Legendre P, Galzin R, Harmelin-Vivien M. Relating behavior to habitat:solutions to the fourth-corner problem. Ecology, 1997, 78(2): 547-562.

[38]

Shipley B, Vile D, Garnier E. From plant traits to plant communities:a statistical mechanistic approach to biodiversity. Science, 2006, 314(5800): 812-814. DOI:10.1126/science.1131344

[39]

Villéger S, Brosse S, Mouchet M, Mouillot D, Vanni M J. Functional ecology of fish:current approaches and future challenges. Aquatic Sciences, 2017, 79(4): 783-801. DOI:10.1007/s00027-017-0546-z

[40]

Winemiller K O. Ecomorphological diversification in lowland freshwater fish assemblages from five biotic regions. Ecological Monographs, 1991, 61(4): 343-365. DOI:10.2307/2937046

[41] [42]

Bellwood D R, Goatley C H R, Brandl S J, Bellwood O. Fifty million years of herbivory on coral reefs:fossils, fish and functional innovations. Proceedings of the Royal Society B, 2014, 281(1781): 20133046. DOI:10.1098/rspb.2013.3046

[43]

Tanaka H, Aoki I, Ohshimo S. Feeding habits and gill raker morphology of three planktivorous pelagic fish species off the coast of northern and western Kyushu in summer. Journal of Fish Biology, 2006, 68(4): 1041-1061. DOI:10.1111/jfb.2006.68.issue-4

[44]

Kramer D L, Bryant M J. Intestine length in the fishes of a tropical stream:2. relationships to diet - the long and short of a convoluted issue. Environmental Biology of Fishes, 1995, 42(2): 129-141. DOI:10.1007/BF00001991

[45]

Cleveland A, Montgomery W. Gut characteristics and assimilation efficiencies in two species of herbivorous damselfishes (Pomacentridae:Stegastes dorsopunicans and S. planifrons). Marine Biology, 2003, 142(1): 35-44.

[46]

Price S A, Friedman S T, Wainwright P C. How predation shaped fish:the impact of fin spines on body form evolution across teleosts. Proceedings of the Royal Society B, 2015, 282(1819): 20151428. DOI:10.1098/rspb.2015.1428

[47]

Brandl S J, Bellwood D R. Pair-formation in coral reef fishes: an ecological perspective//Hughes RN, Hughes D J, Smith I P, eds. Oceanography and Marine Biology: An Annual Review 52. United Kingdom: Taylor & Francis, 2014: 1-80.

[48]

Brandl S J, Bellwood D R. Morphology, sociality, and ecology:can morphology predict pairing behavior in coral reef fishes?. Coral Reefs, 2013, 32(3): 835-846. DOI:10.1007/s00338-013-1042-0

[49]

Hodge J R, Alim C, Bertrand N G, Lee W, Price S A, Tran B, Wainwright P C. Ecology shapes the evolutionary trade-off between predator avoidance and defence in coral reef butterflyfishes. Ecology Letters, 2018, 21(7): 1033-1042. DOI:10.1111/ele.2018.21.issue-7

[50]

Blake R W. Fish functional design and swimming performance. Journal of Fish Biology, 2004, 65(5): 1193-1222. DOI:10.1111/jfb.2004.65.issue-5

[51]

Fulton C, Bellwood D, Wainwright P. The relationship between swimming ability and habitat use in wrasses (Labridae). Marine Biology, 2001, 139(1): 25-33.

[52]

Wainwright P C, Bellwood D R, Westneat M W. Ecomorphology of locomotion in labrid fishes. Environmental Biology of Fishes, 2002, 65(1): 47-62. DOI:10.1023/A:1019671131001

[53] [54]

Mouillot D, Villéger S, Parravicini V, Kulbicki M, Arias-González J E, Bender M, Chabanet P, Floeter S R, Friedlander A, Vigliola L, Bellwood D R. Functional over-redundancy and high functional vulnerability in global fish faunas on tropical reefs. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(38): 13757-13762. DOI:10.1073/pnas.1317625111

[55]

Scheffer M, Portielje R, Zambrano L. Fish facilitate wave resuspension of sediment. Limnology and Oceanography, 2003, 48(5): 1920-1926. DOI:10.4319/lo.2003.48.5.1920

[56]

Yahel G, Yahel R, Katz T, Lazar B, Herut B, Tunnicliffe V. Fish activity:a major mechanism for sediment resuspension and organic matter remineralization in coastal marine sediments. Marine Ecology Progress Series, 2008, 372: 195-209. DOI:10.3354/meps07688

[57]

Janetski D J, Chaloner D T, Tiegs S D, Lamberti G A. Pacific salmon effects on stream ecosystems:a quantitative synthesis. Oecologia, 2009, 159(3): 583-595. DOI:10.1007/s00442-008-1249-x

[58]

Mims M C, Olden J D, Shattuck Z R, Poff N L. Life history trait diversity of native freshwater fishes in North America. Ecology of Freshwater Fish, 2010, 19(3): 390-400. DOI:10.1111/eff.2010.19.issue-3

[59]

Hu W J, Ye G Q, Lu Z B, Du J G, Chen M R, Chou L M, Yang S Y. Study on fish life history traits and variation in the Taiwan Strait and its adjacent waters. Acta Oceanologica Sinica, 2015, 34(2): 45-54. DOI:10.1007/s13131-015-0625-8

[60]

Winemiller K O. Life history strategies, population regulation, and implications for fisheries management. Canadian Journal of Fisheries and Aquatic Sciences, 2005, 62(4): 872-885. DOI:10.1139/f05-040

[61]

Marshall D J, Pettersen A K, Cameron H. A global synthesis of offspring size variation, its eco-evolutionary causes and consequences. Functional Ecology, 2018, 32(6): 1436-1446. DOI:10.1111/fec.2018.32.issue-6

[62]

Winemiller K O, Rose K A. Patterns of life-history diversification in North American fishes:implications for population regulation. Canadian Journal of Fisheries and Aquatic Sciences, 1992, 49(10): 2196-2218. DOI:10.1139/f92-242

[63]

Fox C W, Thakar M S, Mousseau T A. Egg size plasticity in a seed beetle:an adaptive maternal effect. American Naturalist, 1997, 149(1): 149-163. DOI:10.1086/285983

[64] [65] [66]

Pool T K, Olden J D, Whittier J B, Paukert C P. Environmental drivers of fish functional diversity and composition in the Lower Colorado River Basin. Canadian Journal of Fisheries and Aquatic Sciences, 2010, 67(11): 1791-1807. DOI:10.1139/F10-095

[67]

Pease A A, gonzález-Díaz A A, Rodiles-Hernández R, Winemiller K O. Functional diversity and trait-environment relationships of stream fish assemblages in a large tropical catchment. Freshwater Biology, 2012, 57(5): 1060-1075. DOI:10.1111/fwb.2012.57.issue-5

[68]

Wiedmann M A, Aschan M, Certain G, Dolgov A, Greenacre M, Johannesen E, Planque B, Primicerio R. Functional diversity of the Barents sea fish community. Marine Ecology Progress Series, 2014, 495: 205-218. DOI:10.3354/meps10558

[69] [70]

Mims M C, Olden J D. Life history theory predicts fish assemblage response to hydrologic regimes. Ecology, 2012, 93(1): 35-45.

[71]

Horwitz R J. Temporal variability patterns and the distributional patterns of stream fishes. Ecological Monographs, 1978, 48(3): 307-321. DOI:10.2307/2937233

[72]

Stuart-Smith R D, Bates A E, Lefcheck J S, Duffy J E, Baker S C, Thomson R J, Stuart-Smith J F, Hill N A, Kininmonth S J, Airoldi L, Becerro M A, Campbell S J, Dawson T P, Navarrete S A, Soler G A, Strain E M A, Willis T J, Edgar G J. Integrating abundance and functional traits reveals new global hotspots of fish diversity. Nature, 2013, 501(7468): 539-542. DOI:10.1038/nature12529

[73]

Intergovernmental Panel on Climate Change. Climate Change 2013:the Physical Science Basis. Cambridge: Cambridge University Press, 2014.

[74]

Kuczynski L, Legendre P, Grenouillet G. Concomitant impacts of climate change, fragmentation and non-native species have led to reorganization of fish communities since the 1980s. Global Ecology and Biogeography, 2018, 27(2): 213-222. DOI:10.1111/geb.2018.27.issue-2

[75]

Parmesan C. Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics, 2006, 37: 637-669. DOI:10.1146/annurev.ecolsys.37.091305.110100

[76]

Parmesan C, Yohe G. A globally coherent fingerprint of climate change impacts across natural systems. Nature, 2003, 421(6918): 37-42. DOI:10.1038/nature01286

[77] [78]

Chapin Ⅲ F S, Sala O E, Burke I C, Grime J P, Hooper D U, Lauenroth W K, Lombard A, Mooney H A, Mosier A R, Naeem S, Pacala S W, Roy J, Steffen W L, Tilman D. Ecosystem consequences of changing biodiversity:experimental evidence and a research agenda for the future. Bioscience, 1998, 48(1): 45-52. DOI:10.2307/1313227

[79]

Ding C Z, Jiang X M, Xie Z C, Brosse S. Seventy-five years of biodiversity decline of fish assemblages in Chinese isolated plateau lakes:widespread introductions and extirpations of narrow endemics lead to regional loss of dissimilarity. Diversity and Distributions, 2017, 23(2): 171-184. DOI:10.1111/ddi.2017.23.issue-2

[80]

Zhang C, Ding L Y, Ding C Z, Chen L Q, Sun J, Jiang X M. Responses of species and phylogenetic diversity of fish communities in the Lancang River to hydropower development and exotic invasions. Ecological Indicators, 2018, 90: 261-279. DOI:10.1016/j.ecolind.2018.03.004

[81]

Genner M J, Sims D W, Southward A J, Budd G C, Masterson P, Mchugh M, Rendle P, Southall E J, Wearmouth V J, Hawkins S J. Body size-dependent responses of a marine fish assemblage to climate change and fishing over a century-long scale. Global Change Biology, 2010, 16(2): 517-527. DOI:10.1111/gcb.2010.16.issue-2

[82] [83] [84]

Ziv G, Baran E, Nam S, Rodríguez-Iturbe I, Levin S A. Trading-off fish biodiversity, food security, and hydropower in the Mekong River Basin. Proceedings of the National Academy of Science of the United States of America, 2012, 109(15): 5609-5614. DOI:10.1073/pnas.1201423109

[85] [86]

Baxter R M. Environmental effects of dams and impoundments. Annual Review of Ecology and Systematics, 1977, 8: 255-283. DOI:10.1146/annurev.es.08.110177.001351

[87]

Poff N L, Olden J D, Merritt D M, Pepin D M. Homogenization of regional river dynamics by dams and global biodiversity implications. Proceedings of the National Academy of Science of the United States of America, 2007, 104(14): 5732-5737. DOI:10.1073/pnas.0609812104

[88]

Cheng F, Li W, Castello L, Murphy B R, Xie S G. Potential effects of dam cascade on fish:lessons from the Yangtze River. Reviews in Fish Biology and Fisheries, 2015, 25(3): 569-585. DOI:10.1007/s11160-015-9395-9

[89]

Li J P, Dong S K, Peng M C, Yang Z F, Liu S L, Li X Y, Zhao C. Effects of damming on the biological integrity of fish assemblages in the middle Lancang-Mekong River basin. Ecological Indicators, 2013, 34: 94-102. DOI:10.1016/j.ecolind.2013.04.016

[90]

Sabo J L, Ruhi A, Holtgrieve G W, Elliott V, Arias M E, Ngor P B, Räsänen T A, Nam S. Designing river flows to improve food security futures in the Lower Mekong Basin. Science, 2017, 358(6368): aao1053. DOI:10.1126/science.aao1053

[91]

Martinez P J, Chart T E, Trammell M A, Wullschleger J G, Bergersen E P. Fish species composition before and after construction of a main stem reservoir on the White River, Colorado. Environmental Biology of Fishes, 1994, 40(3): 227-239. DOI:10.1007/BF00002509

[92]

Yan Y Z, Wang H, Zhu R, Chu L, Chen Y F. Influences of low-head dams on the fish assemblages in the headwater streams of the Qingyi watershed, China. Environmental Biology of Fishes, 2013, 96(4): 495-506. DOI:10.1007/s10641-012-0035-0

[93]

Sá-Oliveira J C, Hawes J E, Isaac-Nahum V J, Peres C A. Upstream and downstream responses of fish assemblages to an eastern Amazonian hydroelectric dam. Freshwater Biology, 2015, 60(10): 2037-2050. DOI:10.1111/fwb.2015.60.issue-10

[94]

Wang Y K, Rhoads B L, Wang D. Assessment of the flow regime alterations in the middle reach of the Yangtze River associated with dam construction:potential ecological implications. Hydrological Processes, 2016, 30(21): 3949-3966. DOI:10.1002/hyp.v30.21

[95]

Räsänen T A, Someth P, Lauri H, Koponen J, Sarkkula J, Kummu M. Observed river discharge changes due to hydropower operations in the Upper Mekong Basin. Journal of Hydrology, 2017, 545: 28-41. DOI:10.1016/j.jhydrol.2016.12.023

[96]

Helms B S, Werneke D C, Gangloff M, Hartfield E, Feminella J. The influence of low-head dams on fish assemblages in streams across Alabama. Journal of the North American Benthological Society, 2011, 30(4): 1095-1106. DOI:10.1899/10-093.1

[97]

Dudley R K, Platania S P. Flow regulation and fragmentation imperil pelagic-spawning riverine fishes. Ecological Applications, 2007, 17(7): 2074-2086. DOI:10.1890/06-1252.1

[98]

Zhang G, Wu L, Li H T, Liu M, Cheng F, Murphy B R, Xie S G. Preliminary evidence of delayed spawning and suppressed larval growth and condition of the major carps in the Yangtze River below the Three Gorges Dam. Environmental Biology of Fishes, 2012, 93(3): 439-447. DOI:10.1007/s10641-011-9934-8

[99]

Moyle P B, Mount J F. Homogenous rivers, homogenous faunas. Proceedings of the National Academy of Science of the United States of America, 2007, 104(14): 5711-5712. DOI:10.1073/pnas.0701457104

[100] [101]

Tsuboi J I, Endou S, Morita K. Habitat fragmentation by damming threatens coexistence of stream-dwelling charr and salmon in the Fuji River, Japan. Hydrobiologia, 2010, 650(1): 223-232. DOI:10.1007/s10750-009-0076-3

[102]

Vörösmarty C J, McIntyre P B, Gessner M O, Dudgeon D, Prusevich A, Green P, Glidden S, Bunn S E, Sullivan C A, Liermann C R, Davies P M. Global threats to human water security and river biodiversity. Nature, 2010, 467(7315): 555-561. DOI:10.1038/nature09440

[103]

Myers R A, Worm B. Rapid worldwide depletion of predatory fish communities. Nature, 2003, 423(6937): 280-283. DOI:10.1038/nature01610

[104]

Nicolas D, Lobry J, Le Pape O, Boët P. Functional diversity in European estuaries:relating the composition of fish assemblages to the abiotic environment. Estuarine, Coastal and Shelf Science, 2010, 88(3): 329-338. DOI:10.1016/j.ecss.2010.04.010

[105]

Villéger S, Miranda J R, Hernández D F, Mouillot D. Contrasting changes in taxonomic vs. functional diversity of tropical fish communities after habitat degradation. Ecological Applications, 2010, 20(6): 1512-1522. DOI:10.1890/09-1310.1

[106]

Layman C A, Allgeier J E, Rosemond A D, Dahlgren C P, Yeager L A. Marine fisheries declines viewed upside down:human impacts on consumer-driven nutrient recycling. Ecological Applications, 2011, 21(2): 343-349. DOI:10.1890/10-1339.1

[107]

Brind'Amour A, Boisclair D, Dray S, Legendre P. Relationships between species feeding traits and environmental conditions in fish communities:a three-matrix approach. Ecological Applications, 2011, 21(2): 363-377. DOI:10.1890/09-2178.1

[108]

Villéger S, Grenouillet G, Brosse S. Decomposing functional β-diversity reveals that low functional β-diversity is driven by low functional turnover in European fish assemblages. Global Ecology and Biogeography, 2013, 22(6): 671-681. DOI:10.1111/geb.12021

[109]

Montaña C G, Winemiller K O, Sutton A. Intercontinental comparison of fish ecomorphology:null model tests of community assembly at the patch scale in rivers. Ecological Monographs, 2014, 84(1): 91-107. DOI:10.1890/13-0708.1

[110]

McIntyre P B, Flecker A S, Vanni M J, Hood J M, Taylor B W, Thomas S A. Fish distributions and nutrient cycling in streams:can fish create biogeochemical hotspots. Ecology, 2008, 89(8): 2335-2346. DOI:10.1890/07-1552.1

[111]

Allgeier J E, Layman C A, Mumby P J, Rosemond A D. Consistent nutrient storage and supply mediated by diverse fish communities in coral reef ecosystems. Global Change Biology, 2014, 20(8): 2459-2472. DOI:10.1111/gcb.2014.20.issue-8

[112]

Mouillot D, Albouy C, Guilhaumon F, Ben Rais Lasram F, Coll M, Devictor V, Meynard C N, Pauly D, Tomasini J A, Troussellier M, Velez L, Watson R, Douzery E J P, Mouquet N. Protected and threatened components of fish biodiversity in the Mediterranean sea. Current Biology, 2011, 21(12): 1044-1050. DOI:10.1016/j.cub.2011.05.005

[113]

Bellwood D R, Hughes T P, Folke C, Nyström M. Confronting the coral reef crisis. Nature, 2004, 429(6994): 827-833. DOI:10.1038/nature02691

[114]

Clavero M, García-Berthou E. Homogenization dynamics and introduction routes of invasive freshwater fish in the Iberian peninsula. Ecological Applications, 2006, 16(6): 2313-2324. DOI:10.1890/1051-0761(2006)016[2313:HDAIRO]2.0.CO;2

[115]

Villéger S, Grenouillet G, Brosse S. Functional homogenization exceeds taxonomic homogenization among European fish assemblages. Global Ecology and Biogeography, 2014, 23(12): 1450-1460. DOI:10.1111/geb.2014.23.issue-12

[116]

Olden J D, Poff N L, Bestgen K R. Life-history strategies predict fish invasions and extirpations in the Colorado River Basin. Ecological Monographs, 2006, 76(1): 25-40. DOI:10.1890/05-0330

[117]

Ding C Z, Jiang X M, Chen L Q, Juan T, Chen Z M. Growth variation of Schizothorax dulongensis Huang, 1985 along altitudinal gradients:implications for the Tibetan Plateau fishes under climate change. Journal of Applied Ichthyology, 2016, 32(4): 729-733. DOI:10.1111/jai.2016.32.issue-4

[118]

Tao J, He D K, Kennard M J, Ding C Z, Bunn S E, Liu C L, Jia Y T, Che R X, Chen Y F. Strong evidence for changing fish reproductive phenology under climate warming on the Tibetan Plateau. Global Change Biology, 2018, 24(5): 2093-2104. DOI:10.1111/gcb.2018.24.issue-5

[119] [120] [121]

Mcintyre P B, Jones L E, Flecker A S, Vanni M J. Fish extinctions alter nutrient recycling in tropical freshwaters. Proceedings of the National Academy of Science of the United States of America, 2007, 104(11): 4461-4466. DOI:10.1073/pnas.0608148104

[122]

Bellwood D R, Hoey A S, Hughes T P. Human activity selectively impacts the ecosystem roles of parrotfishes on coral reefs. Proceedings of the Royal Society B, 2012, 279(1733): 1621-1629. DOI:10.1098/rspb.2011.1906

[123]

D'Agata S, Mouillot D, Kulbicki M, Andréfouët S, Bellwood D R, Cinner J E, Cowman P F, Kronen M, Pinca S, Vigliola L. Human-mediated loss of phylogenetic and functional diversity in coral reef fishes. Current Biology, 2014, 24(5): 555-560. DOI:10.1016/j.cub.2014.01.049

[124]

Teletchea F, Fontaine P. Levels of domestication in fish:implications for the sustainable future of aquaculture. Fish and Fisheries, 2014, 15(2): 181-195. DOI:10.1111/faf.2014.15.issue-2

[125]

相关知识

Preliminary exploration of marine pollution evolutionary ecology: From behavior, adaptation to evolution
Progress in research on the adaptability of microorganisms to extremely cold environments
Concepts, research progresses and prospects of animal personality
鱼类生态学(fish ecology).ppt
Selective adaptations of macrobenthic functional feeding groups in the Hunhe River basin
Research Progress of Probiotics, Prebiotics, Synbiotics and Intestinal Health in Canine and Feline
Community/Ecosystem Functional Diversity: measurements and development
Progress in biocultural diversity research
Research progress in boosting immune function of pet with Traditional Chinese medicine
供应]40g寸金热带鱼饲料

网址: Functional ecology of freshwater fish: research progress and prospects https://m.mcbbbk.com/newsview636976.html

所属分类:萌宠日常
上一篇: Functional diver
下一篇: Advances and pro