摘要:近年来,水产动物模型在鱼病防控方面的应用越来越广泛。其具备遗传背景清晰、条件可控性强等优点,是鱼病防控基础研究的有效工具之一。本文论述了水产动物模型的建立方法以及在鱼类疾病病原分析、疫苗开发和水质监测方面应用的研究现状,并对水产动物替代模型的发展前景做了简要论述。
Abstract:In recent years, aquatic animal models have been widely used in the area of prevention and control of fish diseases. It has the clear genetic background of the used animals, strong controllability and thus can be an effective tool for basic research of fish disease prevention and control. In this paper, the establishment of aquatic animal model and its application for pathogen analysis of fish diseases, vaccine development and water quality monitoring were discussed, and the development prospect of aquatic animal experimental model was also mentioned.
张智慧. 模型动物斑马鱼对鳗弧菌减毒活疫苗的免疫应答[D]. 上海:华东理工大学, 2013:14Sommerset I, Krossøy B, Biering E, et al. Vaccines for fish in aquaculture[J]. Expert Review of Vaccines, 2005, 4(1):89-101Rao Y L, Su J G. Insights into the antiviral immunity against grass carp (Ctenopharyngodon idella) reovirus (GCRV) in grass carp[J]. Journal of Immunology Research, 2015, 2015:670437Xiong J B, Nie L, Chen J. Current understanding on the roles of gut microbiota in fish disease and immunity[J]. Zoological Research, 2019, 40(2):70-76黄志斌. 剑尾鱼在水产药物临床试验中应用研究[D]. 南京:南京农业大学, 2006:13 Huang Z B. Application of Xiphophorus helleri in the research of aquatic pharmaceutical clinical experiment[D]. Nanjing:Nanjing Agricultural University, 2006:13(in Chinese)窦海鸽, 黄倢, 王秀华, 等. 鱼类实验动物研究概况及在水产动物病害研究上的应用[J]. 海洋湖沼通报, 2006(4):78-85 Dou H G, Huang J, Wang X H, et al. An overview of studies on fish as laboratory animals and its application to the research of aquatic animal diseases[J]. Transactions of Oceanology and Limnology, 2006(4):78-85(in Chinese)
卢耀增. 实验动物学[M]. 北京:人民卫生出版社, 1995:1-2Rakus K, Adamek M, Mojz·esz M, et al. Evaluation of zebrafish (Danio rerio) as an animal model for the viral infections of fish[J]. Journal of Fish Diseases, 2019, 42(6):923-934Das S, Aswani R, Jasim B, et al. Distribution of multi-virulence factors among Aeromonas spp. isolated from diseased Xiphophorus hellerii[J]. Aquaculture International, 2020, 28(1):235-248张斌. 医学研究中人类疾病动物模型的应用[J]. 中外医学研究, 2009, 7(11):58-59Renshaw S A, Loynes C A, Trushell D M, et al. A transgenic zebrafish model of neutrophilic inflammation[J]. Blood, 2006, 108(13):3976-3978Fernandez A A, Bowser P R. Selection for a dominant oncogene and large male size as a risk factor for melanoma in the Xiphophorus animal model[J]. Molecular Ecology, 2010, 19(15):3114-3123Tao S Y, Wang L H, Zhu Z L, et al. Adverse effects of bisphenol A on Sertoli cell blood-testis barrier in rare minnow Gobiocypris rarus[J]. Ecotoxicology and Environmental Safety, 2019, 171:475-483Guan Y J, Zhang T, He J F, et al. Bisphenol A disturbed the lipid metabolism mediated by sterol regulatory element binding protein 1 in rare minnow Gobiocypris rarus[J]. Aquatic Toxicology, 2019, 207:179-186周燕, 朱剑文, 邹丽, 等. 改良法建立妊娠期高血压疾病大鼠模型[J]. 中国实验动物学报, 2009, 17(1):53-56,83 Zhou Y, Zhu J W, Zou L, et al. An improved method to establish animal model of hypertensive disorder complicating pregnancy[J]. Acta Laboratorium Animalis Scientia Sinica, 2009, 17(1):53-56,83(in Chinese)
赵建学, 郭海燕, 陆玮婷, 等. 双虎清肝颗粒对四氯化碳诱发大鼠肝纤维化的防治作用[J]. 世界华人消化杂志, 2008, 16(28):3215-3220Zhao J X, Guo H Y, Lu W T, et al. Efficacy of Shuanghu liver-clearing granule in prevention and treatment of carbon tetrachloride-induced hepatic fibrosis in rats[J]. World Chinese Journal of Digestology, 2008, 16(28):3215-3220(in Chinese)
倪程佩, 王婧怡, 沈艳华, 等. 自发与诱发2型糖尿病小鼠模型的比较研究[J]. 中国比较医学杂志, 2016, 26(9):36-41,49 Ni C P, Wang J Y, Shen Y H, et al. Comparison of spontaneous type 2 diabetes mice with induced diabetes mice[J]. Chinese Journal of Comparative Medicine, 2016, 26(9):36-41,49(in Chinese)
Saraceni P R, Romero A, Figueras A, et al. Establishment of infection models in zebrafish larvae (Danio rerio) to study the pathogenesis of Aeromonas hydrophila[J]. Frontiers in Microbiology, 2016, 7:1219Ahmadifard N, Rezaei Aminlooi V, Tukmechi A, et al. Evaluation of the impacts of long-term enriched Artemia with Bacillus subtilis on growth performance, reproduction, intestinal microflora, and resistance to Aeromonas hydrophila of ornamental fish Poecilia latipinna[J]. Probiotics and Antimicrobial Proteins, 2019, 11(3):957-965Lin Y S, Wang B, Wang N H, et al. Transcriptome analysis of rare minnow (Gobiocypris rarus) infected by the grass carp reovirus[J]. Fish & Shellfish Immunology, 2019, 89:337-344Chen G, Xiong L, Wang Y M, et al. ITGB1b-deficient rare minnows delay grass carp reovirus (GCRV) entry and attenuate GCRV-triggered apoptosis[J]. International Journal of Molecular Sciences, 2018, 19(10):3175冯志桐, 赵爽, 潘炯, 等. 镉对转基因斑马鱼的急性毒性效应[J]. 天津理工大学学报, 2019, 35(2):61-64Feng Z T, Zhao S, Pan J, et al. Acute toxic effects of cadmium on transgenic zebrafish[J]. Journal of Tianjin University of Technology, 2019, 35(2):61-64(in Chinese)
王铁辉, 刘沛霖, 陈宏溪, 等. 稀有鮈鲫对草鱼出血病病毒敏感性的初步研究[J]. 水生生物学报, 1994, 18(2):144-149Wang T H, Liu P L, Chen H X, et al. Preliminary study on the susceptibility of Gobiocypris rarus to hemorrhagic virus of grass carp (GCHV)[J]. Acta Hydrobiologica Sinica, 1994, 18(2):144-149(in Chinese)
潘厚军, 吴淑勤, 李凯彬, 等. 剑尾鱼在检测细菌毒力方面的应用[J]. 水产学报, 2000, 24(5):467-471Pan H J, Wu S Q, Li K B, et al. Application of Xiphophorus helleri to detection of virulence of fish pathogenic bacteria[J]. Journal of Fisheries of China, 2000, 24(5):467-471(in Chinese)
Harriff M J, Bermudez L E, Kent M L. Experimental exposure of zebrafish, Danio rerio (Hamilton), to Mycobacterium marinum and Mycobacterium peregrinum reveals the gastrointestinal tract as the primary route of infection:A potential model for environmental mycobacterial infection[J]. Journal of Fish Diseases, 2007, 30(10):587-600夏立群, 汪美, 赖杰彬, 等. 鰤鱼诺卡氏菌感染斑马鱼模型的建立与组织病理学研究[J]. 热带生物学报, 2016, 7(4):409-416Xia L Q, Wang M, Lai J B, et al. Establishment of a zebrafish model for Nocardia seriolae and histopathological study[J]. Journal of Tropical Biology, 2016, 7(4):409-416(in Chinese)
Yuan J L, Gu Z M, Zheng Y, et al. Accumulation and detoxification dynamics of microcystin-LR and antioxidant responses in male red swamp crayfish Procambarus clarkia[J]. Aquatic Toxicology, 2016, 177:8-18Rozi, Rahayu K, Daruti D N, et al. Study on characterization, pathogenicity and histopathology of disease caused by Aeromonas hydrophila in gourami (Osphronemus gouramy)[J]. IOP Conference Series:Earth and Environmental Science, 2018, 137:012003Boucontet L, Passoni G, Thiry V, et al. A model of superinfection of virus-infected zebrafish larvae:Increased susceptibility to bacteria associated with neutrophil death[J]. Frontiers in Immunology, 2018, 9:1084谭宏亮, 陈凯, 习丙文, 等. 白藜芦醇抑制嗜水气单胞菌毒力作用研究[J]. 水生生物学报, 2019, 43(4):861-868Tan H L, Chen K, Xi B W, et al. Resveratrol inhibits growth, virulence and biofilm formation of Aeromonas hydrophila[J]. Acta Hydrobiologica Sinica, 2019, 43(4):861-868(in Chinese)
孙恒昌, 陈庭金, 黄艳, 等. 鱼用疫苗研究进展[J]. 热带医学杂志, 2014, 14(12):1651-1656乔迁. 大菱鲆红体病虹彩病毒核酸疫苗及两种海水名贵鱼类疾病的研究[D]. 青岛:中国海洋大学, 2010:5 Qiao Q. The study for TRBIV genetic vaccine and the diseases of two rare marine fish species[D]. Qingdao:Ocean University of China, 2010:5(in Chinese)张智慧. 模型动物斑马鱼对鳗弧菌减毒活疫苗的免疫应答[D]. 上海:华东理工大学, 2013:5 Zhang Z H. Immune responses of zebrafish vaccinated with a live attenuated vaccine Vibrio anguillarum[D]. Shanghai:East China University of Science and Technology, 2013:5(in Chinese)LaPatra S, Kao S, Erhardt E B, et al. Evaluation of dual nasal delivery of infectious hematopoietic necrosis virus and enteric red mouth vaccines in rainbow trout (Oncorhynchus mykiss)[J]. Vaccine, 2015, 33(6):771-776Marana M H, Skov J, Chettri J K, et al. Positive correlation between Aeromonas salmonicida vaccine antigen concentration and protection in vaccinated rainbow trout Oncorhynchus mykiss evaluated by a tail fin infection model[J]. Journal of Fish Diseases, 2017, 40(4):507-516Myllymäki H, Niskanen M, Luukinen H, et al. Identification of protective postexposure mycobacterial vaccine antigens using an immunosuppression-based reactivation model in the zebrafish[J]. Disease Models & Mechanisms, 2018, 11(3):dmm033175Ramírez-Paredes J G, Mendoza-Roldan M A, Lopez-Jimena B, et al. Whole cell inactivated autogenous vaccine effectively protects red Nile tilapia (Oreochromis niloticus) against francisellosis via intraperitoneal injection[J]. Journal of Fish Diseases, 2019, 42(8):1191-1200Shareef Z, Reddy S R N. Wireless sensor network for aquaculture:Review, survey, and case study of aquaculture practices in western Godavari region[J]. Journal of Ambient Intelligence and Smart Environments, 2018, 10(5):409-423Ottinger M, Clauss K, Kuenzer C. Aquaculture:Relevance, distribution, impacts and spatial assessments-A review[J]. Ocean & Coastal Management, 2016, 119:244-266Zhou C, Xu D M, Lin K, et al. Intelligent feeding control methods in aquaculture with an emphasis on fish:A review[J]. Reviews in Aquaculture, 2018, 10(4):975-993Sadeghi A, Imanpoor M R. Investigation of LC50, NOEC, and LOEC of oxadiazon, deltamethrin, and malathion on platy fish (Xiphophorus maculatus)[J]. Iranian Journal of Biotechnology, 2015, 9(28):1271-1276Yang Y, Qi S Z, Wang D H, et al. Toxic effects of thifluzamide on zebrafish (Danio rerio)[J]. Journal of Hazardous Materials, 2016, 307:127-136Liang X F, Zha J M. Toxicogenomic applications of Chinese rare minnow (Gobiocypris rarus) in aquatic toxicology[J]. Comparative Biochemistry and Physiology Part D, Genomics & Proteomics, 2016, 19:174-180Luo S, Wu B L, Xiong X Q, et al. Short-term toxicity of ammonia, nitrite, and nitrate to early life stages of the rare minnow (Gobiocypris rarus)[J]. Environmental Toxicology and Chemistry, 2016, 35(6):1422-1427廖伟, 刘大庆, 冯承莲, 等. 不同生长阶段斑马鱼对Cu2+的毒性响应差异[J]. 环境科学研究, 33(3):626-633 Liao W, Liu D Q, Feng C L, et al. Difference in the toxicity response of zebrafish to Cu2+ at different life stages[J]. Research of Environmental Sciences, 33(3):626-633(in Chinese)
Guan Y J, Zhang T, He J F, et al. Bisphenol A disturbed the lipid metabolism mediated by sterol regulatory element binding protein 1 in rare minnow Gobiocypris rarus[J]. Aquatic Toxicology, 2019, 207:179-186Streisinger G, Walker C, Dower N, et al. Production of clones of homozygous diploid zebra fish (Brachydanio rerio)[J]. Nature, 1981, 291(5813):293-296Ke F, Wang Y, Yang C S, et al. Molecular cloning and antibacterial activity of hepcidin from Chinese rare minnow (Gobiocypris rarus)[J]. Electronic Journal of Biotechnology, 2015, 18(3):169-174Zou P F, Chang M X, Li Y, et al. Higher antiviral response of RIG-I through enhancing RIG-I/MAVS-mediated signaling by its long insertion variant in zebrafish[J]. Fish & Shellfish Immunology, 2015, 43(1):13-24Wu R S, Lam I I, Clay H, et al. A rapid method for directed gene knockout for screening in G0 zebrafish[J]. Developmental Cell, 2018, 46(1):112-125Zheng Y, Chen J Z, Liu Y, et al. Molecular mechanism of endocrine system impairment by 17α-methyltestosterone in gynogenic Pengze crucian carp offspring[J]. Ecotoxicology and Environmental Safety, 2016, 128:143-152Tian J J, Hu J, Chen M L, et al. The use of mrp1-deficient (Danio rerio) zebrafish embryos to investigate the role of Mrp1 in the toxicity of cadmium chloride and benzopyrene[J]. Aquatic Toxicology, 2017, 186:123-133Beyer H M, Juillot S, Herbst K, et al. Red light-regulated reversible nuclear localization of proteins in mammalian cells and zebrafish[J]. ACS Synthetic Biology, 2015, 4(9):951-958Kumar A, Bhandari A, Sarde S J, et al. Ancestry & molecular evolutionary analyses of heat shock protein 47 kDa (HSP47/SERPINH1)[J]. Scientific Reports, 2017, 7(1):10394Chen J, Lv Y P, Dai Q M, et al. Host defense peptide LEAP-2 contributes to monocyte/macrophage polarization in barbel steed (Hemibarbus labeo)[J]. Fish & Shellfish Immunology, 2019, 87:184-192Maekawa S, Chiang Y A, Hikima J, et al. Expression and biological activity of two types of interferon genes in medaka (Oryzias latipes)[J]. Fish & Shellfish Immunology, 2016, 48:20-29Wu X M, Hu Y W, Xue N N, et al. Role of zebrafish NLRC5 in antiviral response and transcriptional regulation of MHC related genes[J]. Developmental and Comparative Immunology, 2017, 68:58-68Uchimura T, Hara S, Yazawa T, et al. Involvement of heat shock proteins on the transcriptional regulation of corticotropin-releasing hormone in medaka[J]. Frontiers in Endocrinology, 2019, 10:529Armant O, Gourain V, Etard C, et al. Whole transcriptome data analysis of zebrafish mutants affecting muscle development[J]. Data in Brief, 2016, 8:61-68覃初斌. 干酪乳杆菌对斑马鱼抵御气单胞菌感染的分子机制研究[D]. 杭州:浙江大学, 2017:13 Qin C B. The molecular mechanism of Lactobacillus casei resistance against Aeromonas infection in zebrafish[D]. Hangzhou:Zhejiang University, 2017:13(in Chinese)Watakabe I, Hashimoto H, Kimura Y, et al. Highly efficient generation of knock-in transgenic medaka by CRISPR/Cas9-mediated genome engineering[J]. Zoological Letters, 2018, 4:3Kok F O, Shin M, Ni C W, et al. Reverse genetic screening reveals poor correlation between morpholino-induced and mutant phenotypes in zebrafish[J]. Developmental Cell, 2015, 32(1):97-108Shah A N, Davey C F, Whitebirch A C, et al. Rapid reverse genetic screening using CRISPR in zebrafish[J]. Nature Methods, 2015, 12(6):535-540D'Agostino Y, Locascio A, Ristoratore F, et al. A rapid and cheap methodology for CRISPR/Cas9 zebrafish mutant screening[J]. Molecular Biotechnology, 2016, 58(1):73-78Wagner D E, Weinreb C, Collins Z M, et al. Single-cell mapping of gene expression landscapes and lineage in the zebrafish embryo[J]. Science, 2018, 360(6392):981-987Created with Highcharts 5.0.7
访问量
Chart context menu
近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-012024-022024-032024-042024-052024-062024-072024-082024-092024-102024-112024-120Highcharts.com
Created with Highcharts 5.0.7
Chart context menu
访问类别分布
DOWNLOAD: 5.9 %DOWNLOAD: 5.9 %HTML全文: 83.6 %HTML全文: 83.6 %摘要: 10.5 %摘要: 10.5 %DOWNLOADHTML全文摘要Highcharts.com
Created with Highcharts 5.0.7
Chart context menu
访问地区分布
其他: 92.9 %其他: 92.9 %XX: 5.2 %XX: 5.2 %上海: 0.1 %上海: 0.1 %内网IP: 0.1 %内网IP: 0.1 %北京: 0.2 %北京: 0.2 %宁波: 0.2 %宁波: 0.2 %广州: 0.1 %广州: 0.1 %武汉: 0.1 %武汉: 0.1 %济南: 0.1 %济南: 0.1 %深圳: 0.3 %深圳: 0.3 %湛江: 0.1 %湛江: 0.1 %菏泽: 0.1 %菏泽: 0.1 %运城: 0.3 %运城: 0.3 %其他XX上海内网IP北京宁波广州武汉济南深圳湛江菏泽运城Highcharts.com
相关知识
水产动物模型的建立及在病害防控上的研究进展
水产病害远程诊断技术,有戏!
抑郁症动物模型的研究进展
立足岗位践新风,精准施策解难题——技术中心开展秋季观赏鱼病害监测及防控技术指导
鱼病频发,损失惨重!原因在哪里?如何防控?看这些专家怎么说!
我国鲆鲽类循环水养殖设施与疾病防控技术研究进展
宠物疫病防控科技创新团队综述益生菌在致病性感染中的免疫调节作用及研究进展
水生动物病害防治工作建议
关于印发《水产养殖动物疫病防控指南(试行)》的通知
鱼类病害研究室
网址: 水产动物模型的建立及在病害防控上的研究进展 https://m.mcbbbk.com/newsview677820.html
上一篇: 鱼类肿瘤性疾病的患病率、组织病理 |
下一篇: 鱼类抗病育种研究进展 |