首页 > 分享 > 基因组编辑技术加速猪育种进程

基因组编辑技术加速猪育种进程

[1] SCULLY R, PANDAY A, ELANGO R, et al. DNA double-strand break repair-pathway choice in somatic mammalian cells[J]. Nature Reviews. Molecular Cell Biology, 2019, 20(11):698-714. [2] DELTCHEVA E, CHULINSKI K, SHARMA CM, et al. CRISPR RNA maturation by transencoded small RNA and host factor RNaseⅢ[J]. Nature, 2011, 471(7340):602-607. [3] WANG T, WEI JJ, SABATINI DM, et al. Genetic screens in human cells using the CRISPR-Cas9 system[J]. Science, 2014, 343(6166):80-84. [4] CONG L, RAN FA, COX D, et al. Multiplex genome engineering using CRISPR/Cas systems[J]. Science, 2013, 339(6121):819-823. [5] KOMOR AC, KIM YB, PACKER MS, et al. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage[J]. Nature, 2016, 533(7604):420-424. [6] GAUDELLI NM, KOMOR AC, REES HA, et al. Programmable base editing of A?T to G?C in genomic DNA without DNA cleavage[J]. Nature, 2017, 551(7681):464-471. [7] ZHAO DD, LI J, LI SW, et al. Glycosylase base editors enable C-to-A and C-to-G base changes[J]. Nature Biotechnology, 2021, 39(1):35-40. [8] ZHANG XH, ZHU BY, CHEN L, et al. Dual base editor catalyzes both cytosine and adenine base conversions in human cells[J]. Nature Biotechnology, 2020, 38(7):856-860. [9] 王煜, 宋瑞高, 赵建国, 等. 碱基编辑器介导的猪IGF2基因高效定点突变[J]. 中国畜牧兽医, 2020, 47(11):3427-3435. WANG Y, SONG RG, ZHAO JG, et al. Efficient site-directed mutation of porcine IGF2 gene via base editors[J]. China Animal Husbandry & Veterinary Medicine, 2020, 47(11):3427-3435. [10] ANZALONE AV, RANDOLPH PB, DAVIS JR, et al. Search-and-replace genome editing without double-strand breaks or donor DNA[J]. Nature, 2019, 576(7785):149-157. [11] QI Y, ZHANG Y, TIAN S, et al. An optimized prime editing system for efficient modification of the pig genome[J]. Science China Life Sciences, 2023, 66(12):2851-2861. [12] VAN LAERE AS, NGUYEN M, BRAUNSCHWEIG M, et al. A regulatory mutation in IGF2 causes a major QTL effect on muscle growth in the pig[J]. Nature, 2003, 425(6960):832-836. [13] MARKLJUNG E, JIANG L, JAFFE JD, et al. ZBED6, a novel transcription factor derived from a domesticated DNA transposon regulates IGF2 expression and muscle growth[J]. PLoS Biology, 2009, 7(12):e1000256. doi: 10.1371/journal.pbio.1000256. [14] XIANG G, REN J, HAI T, et al. Editing porcine IGF2 regulatory element improved meat production in Chinese Bama pigs[J]. Cellular and Molecular Life Sciences CMLS, 2018, 75(24):4619-4628. [15] DUO T, LIU X, MO D, et al. Single-base editing in IGF2 improves meat production and intramuscular fat deposition in Liang Guang Small Spotted pigs[J]. Journal of Animal Science and Biotechnology, 2023, 14(1):141. [16] WANG D, PAN D, XIE B, et al. Porcine ZBED6 regulates growth of skeletal muscle and internal organs via multiple targets[J]. PLoS Genetics, 2021, 17(10):e1009862. [17] MAPHERRON AC, LAWLER AM, LEE SJ. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member[J]. Nature, 1997, 387(6628):83-90. [18] MAPHERRON AC, LEE SJ. Double muscling in cattle due to mutations in the myostatin gene[J]. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(23):12457-12461. [19] SCHUELKE M, WAGNER KR, STOLZ LE, et al. Myostatin mutation associated with gross muscle hypertrophy in a child[J]. The New England Journal of Medicine, 2004, 350(26):2682-2688. [20] SHELTON GD, ENGVALL E. Gross muscle hypertrophy in whippet dogs is caused by a mutation in the myostatin gene[J]. Neuromuscular Disorders, 2007, 17(9-10):721-722. [21] QIAN L, TANG M, YANG J, et al. Targeted mutations in myostatin by zinc-finger nucleases result in double-muscled phenotype in Meishan pigs[J]. Scientific Reports, 2015(5):14435. [22] FAN Z, LIU Z, XU K, et al. Long-term, multidomain analyses to identify the breed and allelic effects in MSTN-edited pigs to overcome lameness and sustainably improve nutritional meat production[J]. Science China Life Sciences, 2022, 65(2):362-375. [23] WANG KK, OUYANG HS, XIE ZC, et al. Efficient generation of myostatin mutations in pigs using the CRISPR/Cas9 system[J]. Scientific Reports, 2015, 5:16623. doi: 10.1038/srep16623. [24] BI YZ, HUA ZD, LIU XM, et al. Isozygous and selectable marker-free MSTN knockout cloned pigs generated by the combined use of CRISPR/Cas9 and Cre/LoxP[J]. Scientific Reports, 2016(6):31729. doi: 10.1038/srep31729. [25] PENG DW, LI RQ, ZENG W, et al. Editing the cystine knot motif of MSTN enhances muscle development of Liang Guang Small Spotted pigs[J]. Hereditas (Beijing), 2021, 43(3):261-270. [26] HOU LJ, SHI J, CAO LB, et al. Pig has no uncoupling protein 1[J]. Biochemical and Biophysical Research Communications, 2017, 487(4):795-800. [27] ZHENG QT, LIN J, HUANG JJ, et al. Reconstitution of UCP1 using CRISPR/Cas9 in the white adipose tissue of pigs decreases fat deposition and improves thermogenic capacity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(45):E9474-E9482. [28] WHITWORTH KM, ROWLAND RR, EWEN Cl, et al. Gene-edited pigs are protected from porcine reproductive and respiratory syndrome virus[J]. Nature Biotechnology, 2016, 34(1):20-22. [29] 魏迎辉, 刘志国, 徐奎, 等. CD163双等位基因编辑猪的制备及传代[J]. 中国农业科学, 2018, 51(4):770-777. WEI YH, LIU ZG, XU K, et al. Generation and propagation of cluster of differentiation 163 biallelic gene editing pigs[J]. Scientia Agricultura Sinica, 2018, 51(4):770-777. [30] BURKARD C, OPRIESSNIG T, MILEHAM AJ, et al. Pigs lacking the scavenger receptor cysteine-rich domain 5 of CD163 are resistant to porcine reproductive and respiratory syndrome virus 1 infection[J]. Journal of Virology, 2018, 92(16):415-418. [31] WANG H, SHEN L, CHEN J, et al. Deletion of CD163 exon 7 confers resistance to highly pathogenic porcine reproductive and respiratory viruses on pigs[J]. International Journal of Biological Sciences, 2019, 15(9):1993-2005. [32] 王慧, 冯保亮, 吴丹, 等. CD163基因在猪繁殖与呼吸综合征抗病育种中的研究进展[J]. 畜牧兽医学报, 2023, 54(8):3127-3138. WANG H, FENG BL, WU D, et al. Research progress of CD163 gene and disease-resistant breeding on porcine reproductive and respiratory syndrome[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(08):3127-3138. [33] XIE ZC, PANG DX, YUAN HM, et al. Genetically modified pigs are protected from classical swine fever virus[J]. PLoS Pathogens, 2018, 14(12):e1007193. doi: 10.1371/journal.ppat.1007193. [34] HANSEN GH, DELMAS B, BESNARDEAU L, et al. The coronavirus transmissible gastroenteritis virus causes infection after receptor-mediated endocytosis and acid-dependent fusion with an intracellular compartment[J]. Journal of Virology, 1998, 72(1):527-534. [35] XU K, ZHOU YR, MU YL, et al. CD163 and pAPN double-knockout pigs are resistant to PRRSV and TGEV and exhibit decreased susceptibility to PDCoV while maintaining normal production performance[J]. Elife, 2020(9):e57132. doi: 10.7554/eLife.57132. [36] SONG R, WANG Y, ZHENG Q, et al. One-step base editing in multiple genes by direct embryo injection for pig trait improvement[J]. Science China Life Sciences, 2022, 65(4):739-752. [37] XU H, XIAO TF, CHEN CH, et al. Sequence determinants of improved CRISPR sgRNA design[J]. Genome Research, 2015, 25(8):1147-1157. [38] ZHAO C, LIU H, XIAO T, et al. CRISPR screening of porcine sgRNA library identifies host factors associated with Japanese encephalitis virus replication[J]. Nature Communications, 2020, 11(1):5178.

相关知识

破题“卡脖子”技术 动物基因编辑抗病育种专题研讨会在京召开
犬的繁殖育种技术最新研究进展
世界知名猪育种公司概述
现代猪育种新技术和应用策略
基因编辑CRISPR技术在海洋生物遗传育种的应用进展
Nature:中国机构将基因编辑猪当宠物出售
大数据分析指导宠物育种决策.pptx资源
农业农村部猪遗传育种重点实验室
精准育种 破解鱼类生殖奥秘
宠物猪遗传育种与繁殖技术的应用现状

网址: 基因组编辑技术加速猪育种进程 https://m.mcbbbk.com/newsview700045.html

所属分类:萌宠日常
上一篇: 最新QQ宠物——猪猪进阶喂养指南
下一篇: 《我的世界》里的猪、牛、羊、鸡、