首页 > 分享 > 一种基于机器视觉的鱼病识别处理装置

一种基于机器视觉的鱼病识别处理装置

一种基于机器视觉的鱼病识别处理装置

1.本发明属于鱼类养殖技术领域,具体涉及一种基于机器视觉的鱼病识别处理装置。

背景技术:

2.目前市场上的鱼类养殖装置,普遍采用人工经验判断鱼是否患病,导致因人工经验不足,人工判断的偶然性较大,导致对鱼病判断处理的错误率过高,导致人工过量对鱼进行施药,导致成品鱼的食品安全指标超标,影响消费者的健康,导致成品鱼的市场竞争力大大下降。

技术实现要素:

3.本发明的目的是针对现有鱼病判断处理的错误率过高的问题,提供了一种基于机器视觉的鱼病识别处理装置。
4.本发明是通过以下技术方案实现的:一种基于机器视觉的鱼病识别处理装置,包括微处理器,所述微处理器能完成取指令、执行指令,以及与外界存储器和逻辑部件交换信息操作;
5.数据库,所述数据库用于将采集的不同时期、不同品种的鱼苗活动数据、环境数据、病变样本的存储,用户可以对文件中的数据运行新增、截取、更新、删除操作;
6.机器视觉系统,所述机器视觉系统通过机器视觉产品和各项辅助传感器完成鱼塘内鱼的生理状况信息的获取和行为辨识,将被摄取的目标鱼体转换成图像信号,传送给图像处理模块;
7.图像处理模块,利用图像处理技术,得到被摄目标鱼体的形态信息,根据像素分布和亮度、颜色信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标鱼体的特征,并和数据库内鱼类行为做比对;
8.分析模块,包括对病变部和鱼体的面积、周长与面积比、长宽比参数的计算,并对病变部发病情况进行评价;
9.控制模块,采用大数据技术对鱼病做出精确判断和紧急处理,控制模块连接各项鱼塘控制器,将数据参数转换为控制信号对鱼类养殖装置进行处理控制工作。
10.优选的,所述目标鱼体的特征包括体表颜色度和尾鳍背鳍伸展度,以及鱼身呈现特殊病变或病症特征(斑点、长白毛、烂块、红肿、水肿、充血、瘀血、出血、颜色异常、粘膜增加、粘膜零落)。
11.优选的,所述传感器包括浊度传感器、溶解氧测定仪和温度传感器;
12.所述浊度传感器用于通过测量透过水的光量来测量水中的悬浮固体,而这些悬浮固体可以反映出水体受污染的情况;
13.所述溶解氧测定仪用于测定水中溶解氧的装置;
14.所述温度传感器用于测量水体温度并转换成可用输出信号的传感器。
15.优选的,所述图像处理模块采集图像后经过图像预处理,去除背景,分割病变区,最后进行病变区计数、病变区面积和病变区长度的计算
16.优选的,所述图像预处理包括图像数字化、图像灰度化、图像增强、图像分割和数学形态学处理技术;
17.去除背景具体过程如下:彩色图像转化为灰度图像g;利用最大类间方差法,将灰度图像转化为二值图像e,其中背景b区域为黑色,鱼体l区域为白色,利用边缘跟踪算法探测每张鱼体区域并标记鱼体,并计算每张鱼体的面积s
li
,用区域l作为模板,根据公式从原始图像中获取完整的彩色鱼体图片,去除背景,式中fpd(x,y)为完整鱼体区域中像素点的像素值;pr(x,y)为原始图像中像素点,fpr(x,y)为pr(x,y)像素点的像素值;
18.将分割后病变区区域图像d转换为灰度图像dg;然后利用最大类间方差法将灰度图像dg转化为二值图像de,在此基础之上进行像素计算病变区计数:将每个封闭的边缘内部定义为一个区域,利用边缘跟踪算法,依次探测de中标记好的每张鱼体图片中的区域,记录区域个数即为每张鱼体图片上病变区的个数;病变区面积:计算每张鱼体图片上离散的病变区区域面积,并计算总面积;病变区长宽:利用最小外接矩形,计算鱼体图片上每个病变区区域的长宽,并进行排序,取最长的参数作为分级标准。
19.优选的,所述鱼类养殖装置包括增氧泵、过滤器、投食投药装置。
20.优选的,所述增氧泵设置在养殖水域的中间,当水中氧量低于阈值时增氧泵开始工作,且根据养殖水域的面积和增氧泵的效应面积设置对应个数的增氧泵;
21.过滤器在养殖水体透光量低于预设阈值时,过滤器开始工作,将水体中的悬浮物进行过滤;
22.投食投药装置根据鱼病识别的结构进行分析后,设置定时定量投喂鱼料和治疗药物。
23.本发明相比现有技术具有以下优点:本发明通过机器视觉技术和大数据技术相配合,实现大数据技术鱼病诊断、鱼塘环境云端智能监控和智能化处理,有效推动智慧渔业的发展,提高渔业生产效率和产量、保障水产品安全、降低渔业养殖风险、改善渔业养殖环境。
附图说明
24.图1为一种基于机器视觉的鱼病识别处理装置。
具体实施方式
25.下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
26.实施例
27.请参阅图1,一种基于机器视觉的鱼病识别处理装置,包括微处理器,微处理器的型号为stm32f103,微处理器能完成取指令、执行指令,以及与外界存储器和逻辑部件交换
信息操作;
28.数据库,数据库用于将采集的不同时期、不同品种的鱼苗活动数据、环境数据、病变样本的存储,用户可以对文件中的数据运行新增、截取、更新、删除操作;
29.机器视觉系统,机器视觉系统通过opencv机器视觉和各项辅助传感器完成鱼塘内鱼的生理状况信息的获取和行为辨识,将被摄取的目标鱼体转换成图像信号,传送给图像处理模块;
30.图像处理模块,利用图像处理技术,得到被摄目标鱼体的形态信息,根据像素分布和亮度、颜色信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标鱼体的特征,并和数据库内鱼类行为做比对;
31.分析模块,包括对病变部和鱼体的面积、周长与面积比、长宽比参数的计算,并对病变部发病情况进行评价;
32.控制模块,采用大数据技术对鱼病做出精确判断和紧急处理,控制模块连接各项鱼塘控制器,将数据参数转换为控制信号对鱼类养殖装置进行处理控制工作。
33.目标鱼体的特征包括体表颜色度和尾鳍背鳍伸展度,以及鱼身呈现特殊病变或病症特征(斑点、长白毛、烂块、红肿、水肿、充血、瘀血、出血、颜色异常、粘膜增加、粘膜零落)。
34.传感器包括浊度传感器、溶解氧测定仪和温度传感器;
35.浊度传感器用于通过测量透过水的光量来测量水中的悬浮固体,而这些悬浮固体可以反映出水体受污染的情况;
36.溶解氧测定仪用于测定水中溶解氧的装置,工作原理是氧透过隔膜被工作电极还原,产生与氧浓度成正比的扩散电流,通过测量此电流,得到水中溶解氧的浓度。
37.温度传感器用于测量水体温度并转换成可用输出信号的传感器。
38.图像处理模块采集图像后经过图像预处理,去除背景,分割病变区,最后进行病变区计数、病变区面积和病变区长度的计算
39.图像预处理包括图像数字化、图像灰度化、图像增强、图像分割和数学形态学处理技术;
40.去除背景具体过程如下:彩色图像转化为灰度图像g;利用最大类间方差法,将灰度图像转化为二值图像e,其中背景b区域为黑色,鱼体l区域为白色,利用边缘跟踪算法探测每张鱼体区域并标记鱼体,并计算每张鱼体的面积sli,用区域l作为模板,根据公式从原始图像中获取完整的彩色鱼体图片,去除背景,式中fpd(x,y)为完整鱼体区域中像素点的像素值;pr(x,y)为原始图像中像素点,fpr(x,y)为pr(x,y)像素点的像素值;
41.将分割后病变区区域图像d转换为灰度图像dg;然后利用最大类间方差法将灰度图像dg转化为二值图像de,在此基础之上进行像素计算病变区计数:将每个封闭的边缘内部定义为一个区域,利用边缘跟踪算法,依次探测de中标记好的每张鱼体图片中的区域,记录区域个数即为每张鱼体图片上病变区的个数;病变区面积:计算每张鱼体图片上离散的病变区区域面积,并计算总面积;病变区长宽:利用最小外接矩形,计算鱼体图片上每个病变区区域的长宽,并进行排序,取最长的参数作为分级标准。
42.鱼类养殖装置包括增氧泵、过滤器和投食投药装置。
43.增氧泵设置在养殖水域的中间,当水中氧量低于阈值时增氧泵开始工作,且根据养殖水域的面积和增氧泵的效应面积设置对应个数的增氧泵;
44.过滤器在养殖水体透光量低于预设阈值时,过滤器开始工作,将水体中的悬浮物进行过滤;
45.投食投药装置根据鱼病识别的结构进行分析后,设置定时定量投喂鱼料和治疗药物。
46.本发明的工作过程:本发明通过在opencv机器视觉和各项辅助传感器对鱼塘内鱼的生理状况信息的获取和行为辨识,将采集到的数据模拟量参数转换为数字量参数,利用采集到的大量照片建立鱼类行为数据库,应用机器视觉技术对当前鱼类行为和数据库内鱼类行为做比对,采用大数据技术对鱼病做出精确判断和紧急处理,控制装置连接各项鱼塘控制器,将数据参数转换为控制信号对鱼类养殖装置进行处理控制工作,实现大数据技术鱼病诊断、鱼塘环境云端智能监控和智能化处理,有效推动智慧渔业的发展,提高渔业生产效率和产量、保障水产品安全、降低渔业养殖风险、改善渔业养殖环境。
47.需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下。由语句“包括一个......限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素”。
48.尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

相关知识

鱼病识别专家系统的专业应用研究
一种基于人工智能技术的宠物状态识别装置
基于机器视觉技术的动物行为自动识别和分类
基于机器视觉的宠物狗远程监护系统
基于视觉的宠物撕咬行为识别方法、装置、设备及介质与流程
基于计算机视觉的野生动物识别跟踪与行为检测系统,方法,设备及存储介质
一种精确视觉刺激的小动物行为记录装置
前谷歌员工开发出一种机器人宠物训练器 可利用计算机视觉和Tensor AI处理单元检测出狗狗对训练的细微反应
一种机器宠物牵引感应装置的制作方法
零基础如何学习机器视觉

网址: 一种基于机器视觉的鱼病识别处理装置 https://m.mcbbbk.com/newsview709732.html

所属分类:萌宠日常
上一篇: 喜帅 仓鼠透明长方形浴室厕所小仓
下一篇: AI摸鱼:日本“AI 鱼脸识别”