ARAI T, CHINO N. Influence of water salinity on the strontium: calcium ratios in otoliths of the giant mottled eel, Anguilla marmorata. Environmental Biology of Fishes, 2016, 100(3): 281-286
ARTHINGTON A H, DULVY N K, GLADSTONE W, et al. Fish conservation in freshwater and marine realms: Status, threats and management. Aquatic Conservation: Marine and Freshwater Ecosystems, 2016, 26(5): 838-857 DOI:10.1002/aqc.2712
ASCHENBRENNER A, FERREIRA B P, ROOKER J R. Spatial and temporal variability in the otolith chemistry of the Brazilian snapper Lutjanus alexandrei from estuarine and coastal environments. Journal of Fish Biology, 2016, 89(1): 753-769 DOI:10.1111/jfb.13003
AVIGLIANO E, MILLER N, VOLPEDO A V. Silversides (Odontesthes bonariensis) reside within freshwater and estuarine habitats, not marine environments. Estuarine, Coastal and Shelf Science, 2018a, 205: 123-130 DOI:10.1016/j.ecss.2018.03.014
AVIGLIANO E, PISONERO J, DOMÁNICO A, et al. Spatial segregation and connectivity in young and adult stages of Megaleporinus obtusidens inferred from otolith elemental signatures: Implications for management. Fisheries Research, 2018b, 204: 239-244 DOI:10.1016/j.fishres.2018.03.007
AVIGLIANO E, POUILLY M, BOUCHEZ J, et al. Strontium isotopes (87Sr/86Sr) reveal the life history of freshwater migratory fishes in the La Plata Basin. River Research and Applications, 2020, 36(10): 1985-2000 DOI:10.1002/rra.3727
BAERWALD M R, MEEK M H, STEPHENS M R, et al. Migration-related phenotypic divergence is associated with epigenetic modifications in rainbow trout. Molecular Biology, 2016, 25(8): 1785-1800
BARDARSON H, MCADAM B J, THORSTEINSSON V, et al. Otolith shape differences between ecotypes of Icelandic cod (Gadus morhua) with known migratory behaviour inferred from data storage tags. Canadian Journal of Fisheries and Aquatic Sciences, 2017, 74(12): 2122-2130 DOI:10.1139/cjfas-2016-0307
BARNES T C, GILLANDERS B M. Combined effects of extrinsic and intrinsic factors on otolith chemistry: Implications for environmental reconstructions. Canadian Journal of Fisheries and Aquatic Sciences, 2013, 70(8): 1159-1166 DOI:10.1139/cjfas-2012-0442
BATH G E, THORROLD S R, JONES C M, et al. Strontium and barium uptake in aragonitic otoliths of marine fish. Geochimica et Cosmochimica Acta, 2000, 64(10): 1705-1714 DOI:10.1016/S0016-7037(99)00419-6
BEGON M, MORTIMER M, THOMPSON D. Population ecology: A unified study of animals and plants. Blackwell Science, Cambridge, 1996
BRENNAN S R, FERNANDEZ D P, ZIMMERMAN C E, et al. Strontium isotopes in otoliths of a non-migratory fish (Slimy sculpin): Implications for provenance studies. Geochimica et Cosmochimica Acta, 2015a, 149: 32-45 DOI:10.1016/j.gca.2014.10.032
BRENNAN S R, ZIMMERMAN C E, FERNANDEZ D P, et al. Strontium isotopes delineate fine-scale natal origins and migration histories of Pacific salmon. Science advances, 2015b, 1(4): e1400124 DOI:10.1126/sciadv.1400124
BURNS N M, HOPKINS C R, BAILEY D M, et al. Otolith chemoscape analysis in whiting links fishing grounds to nursery areas. Communications Biology, 2020, 3(1): 1-12 DOI:10.1038/s42003-019-0734-6
CAMPANA S E, THORROLD S R. Otoliths, increments, and elements: Keys to a comprehensive understanding of fish populations?. Canadian Journal of Fisheries and Aquatic Sciences, 2001, 58(1): 30-38 DOI:10.1139/f00-177
CAMPANA S E. Chemistry and composition of fish otoliths: Pathways, mechanisms and applications. Marine Ecology Progress Series, 1999, 188: 263-297 DOI:10.3354/meps188263
CHANG M Y, GEFFEN A J. Taxonomic and geographic influences on fish otolith microchemistry. Fish and Fisheries, 2013, 14(4): 458-492 DOI:10.1111/j.1467-2979.2012.00482.x
CHEN T T, JIANG T, LI M M, et al. Inversion of habitat history for the long-jaw ecotype Coilia nasus collected from Nanjing section of the Yangtze River. Journal of Fisheries of China, 2016a, 40(6): 882-892 [陈婷婷, 姜涛, 李孟孟, 等. 长江南京江段长颌鲚生境履历的反演. 水产学报, 2016a, 40(6): 882-892]
CHEN T T, JIANG T, LU M J, et al. Microchemistry analysis of otoliths of Coilia nasus and Coilia brachygnathus from the Jingjiang section of the Yangtze River. Journal of Lake Sciences, 2016b, 28(1): 149-155 [陈婷婷, 姜涛, 卢明杰, 等. 基于耳石微化学的长江靖江段长颌鲚与短颌鲚生境履历重建. 湖泊科学, 2016b, 28(1): 149-155]
CLARKE L M, THORROLD S R, CONOVER D O. Population differences in otolith chemistry have a genetic basis in Menidia menidia. Canadian Journal of Fisheries and Aquatic Sciences, 2011, 68(1): 105-114 DOI:10.1139/F10-147
COLLINS S M, BICKFORD N, MCINTYRE P B, et al. Population structure of a neotropical migratory fish: Contrasting perspectives from genetics and otolith microchemistry. Transactions of the American Fisheries Society, 2013, 142(5): 1192-1201 DOI:10.1080/00028487.2013.804005
CONG X R, LI X Q, DONG G C, et al. Anadromous tapertail anchovy Coilia nasus is still found in Dongping Lake. Chinese Journal of Fisheries, 2019, 32(5): 55-59 [丛旭日, 李秀启, 董贯仓, 等. 东平湖仍有洄游型刀鲚分布的实证研究. 水产学杂志, 2019, 32(5): 55-59 DOI:10.3969/j.issn.1005-3832.2019.05.009]
CONG X R, LI X Q, DONG G C, et al. Preliminary investigations on Coilia nasus from the Kenli section of the Huanghe River based on otolith microchemistry. Progress in Fishery Sciences, 2022, 43(1): 31-37 [丛旭日, 李秀启, 董贯仓, 等. 基于耳石微化学的黄河垦利段刀鲚生活史初步研究. 渔业科学进展, 2022, 43(1): 31-37]
DOU S Z, AMANO Y, YU X, et al. Elemental signature in otolith nuclei for stock discrimination of anadromous tapertail anchovy (Coilia nasus) using laser ablation ICPMS. Environmental Biology of Fishes, 2012a, 95(4): 431-443 DOI:10.1007/s10641-012-0032-3
DOU S Z, YOKOUCHI K, YU X, et al. The migratory history of anadromous and non-anadromous tapertail anchovy Coilia nasus in the Yangtze River estuary revealed by the otolith Sr : Ca ratio. Environmental Biology of Fishes, 2012b, 95(4): 481-490 DOI:10.1007/s10641-012-0042-1
DOUBLEDAY Z A, IZZO C, WOODCOCK S H, et al. Relative contribution of water and diet to otolith chemistry in freshwater fish. Aquatic Biology, 2013, 18(3): 271-280 DOI:10.3354/ab00511
ELSDON T S, GILLANDERS B M. Strontium incorporation into calcified structures: Separating the effects of ambient water concentration and exposure time. Marine Ecology Progress Series, 2005, 285: 233-243 DOI:10.3354/meps285233
ENGSTEDT O, ENGKVIST R, LARSSON P. Elemental fingerprinting in otoliths reveals natal homing of anadromous Baltic Sea pike (Esox lucius L.). Ecology of Freshwater Fish, 2014, 23(3): 313-321 DOI:10.1111/eff.12082
FERGUSON A, REED T E, CROSS T F, et al. Anadromy, potamodromy and residency in brown trout Salmo trutta: The role of genes and the environment. Journal of Fish Biology, 2019, 95(3): 692-718 DOI:10.1111/jfb.14005
GARCEZ R C S, HUMSTON R, HARBOR D, et al. Otolith geochemistry in young-of-the-year peacock bass Cichla temensis for investigating natal dispersal in the Rio Negro (Amazon- Brazil) River system. Ecology of Freshwater Fish, 2015, 24(2): 242-251 DOI:10.1111/eff.12142
GIBB F M, RÉGNIER T, DONALD K, et al. Connectivity in the early life history of sandeel inferred from otolith microchemistry. Journal of Sea Research, 2017, 119: 8-16 DOI:10.1016/j.seares.2016.10.003
GILLANDERS B M. Otolith chemistry to determine movements of diadromous and freshwater fish. Aquatic Living Resources, 2005, 18(3): 291-300 DOI:10.1051/alr:2005033
GRAMMER G L, MORRONGIELLO J R, IZZO C, et al. Coupling biogeochemical tracers with fish growth reveals physiological and environmental controls on otolith chemistry. Ecological Monographs, 2017, 87(3): 487-507 DOI:10.1002/ecm.1264
GRØNKJÆR P. Otoliths as individual indicators: A reappraisal of the link between fish physiology and otolith characteristics. Marine and Freshwater Research, 2016, 67(7): 881-888 DOI:10.1071/MF15155
HARRIS L N, BAJNO R, GALLAGHER C P, et al. Life-history characteristics and landscape attributes as drivers of genetic variation, gene flow, and fine-scale population structure in northern Dolly Varden (Salvelinus malma malma) in Canada. Canadian Journal of Fisheries and Aquatic Sciences, 2015, 72(10): 1477-1493 DOI:10.1139/cjfas-2015-0016
HE S, XU Y J. Spatiotemporal distributions of Sr and Ba along an estuarine river with a large salinity gradient to the Gulf of Mexico. Water, 2016, 8(8): 323 DOI:10.3390/w8080323
HECKEL J W, QUIST M C, WATKINS C J, et al. Life history structure of westslope cutthroat trout: Inferences from otolith microchemistry. Fisheries Research, 2020, 222(2): 105416
HEGG J C, KENNEDY B P, FREMIER A K. Predicting strontium isotope variation and fish location with bedrock geology: Understanding the effects of geologic heterogeneity. Chemical Geology, 2013, 360/361: 89-98 DOI:10.1016/j.chemgeo.2013.10.010
HUGHES J M, SCHMIDT D J, MACDONALD J I, et al. Low interbasin connectivity in a facultatively diadromous fish: Evidence from genetics and otolith chemistry. Molecular Ecology, 2014, 23(5): 1000-1013 DOI:10.1111/mec.12661
IZZO C, DOUBLEDAY Z A, GILLANDERS B M. Where do elements bind within the otoliths of fish?. Marine and Freshwater Research, 2016, 67(7): 1072-1076 DOI:10.1071/MF15064
IZZO C, REIS-SANTOS P, GILLANDERS B M. Otolith chemistry does not just reflect environmental conditions: A meta-analytic evaluation. Fish and Fisheries, 2018, 19(3): 441-454 DOI:10.1111/faf.12264
JIANG T, LIU H, LU M, et al. A possible connectivity among estuarine tapertail anchovy (Coilia nasus) populations in the Yangtze River, Yellow Sea, and Poyang Lake. Estuaries and Coasts, 2016, 39(6): 1762-1768 DOI:10.1007/s12237-016-0107-z
JIANG T, LIU H, SHEN X, et al. Life history variations among different populations of Coilia nasus along the Chinese coast inferred from otolith microchemistry. Journal of the Faculty of Agriculture, Kyushu University, 2014, 59(2): 383-389 DOI:10.5109/1467650
JIANG T, LIU H B, XUAN Z Y, et al. Similarity of microchemical "fingerprints" between the pectoral fin ray and otolith of Coilia nasus. Progress in Fishery Sciences, 2021, 42(1): 100-107 [姜涛, 刘洪波, 轩中亚, 等. 刀鲚胸鳍条和耳石微化学"指纹"相似性研究. 渔业科学进展, 2021, 42(1): 100-107]
JIANG T, YANG J, LIU H, et al. Life history of Coilia nasus from the Yellow Sea inferred from otolith Sr : Ca ratios. Environmental Biology of Fishes, 2012, 95(4): 503-508 DOI:10.1007/s10641-012-0066-6
KENDALL N W, MCMILLAN J R, SLOAT M R, et al. Anadromy and residency in steelhead and rainbow trout (Oncorhynchus mykiss): A review of the processes and patterns. Canadian Journal of Fisheries and Aquatic Sciences, 2015, 72(3): 319-342 DOI:10.1139/cjfas-2014-0192
KENNEDY B P, BLUM J D, FOLT C L, et al. Using natural strontium isotopic signatures as fish markers: Methodology and application. Canadian Journal of Fisheries and Aquatic Sciences, 2000, 57(11): 2280-2292 DOI:10.1139/f00-206
KHUMBANYIWA D D, LI M, JIANG T, et al. Unravelinghabitat use of Coilia nasus from Qiantang River of China by otolith microchemistry. Regional Studies in Marine Science, 2018, 18: 122-128 DOI:10.1016/j.rsma.2018.02.001
KITANISHI S, YAMAMOTO T, URABE H, et al. Hierarchical genetic structure of native masu salmon populations in Hokkaido, Japan. Environmental Biology of Fishes, 2018, 101(5): 699-710 DOI:10.1007/s10641-018-0730-6
LARSSON P, TIBBLIN P, KOCH-SCHMIDT P, et al. Ecology, evolution, and management strategies of northern pike populations in the Baltic Sea. Ambio, 2015, 44(Suppl. 3): S451-S461
LAZARTIGUES A V, PLOURDE S, DODSON J J, et al. Determining natal sources of capelin in a boreal marine park using otolith microchemistry. ICES Journal of Marine Science, 2016, 73(10): 2644-2652 DOI:10.1093/icesjms/fsw104
LI M M, JIANG T, KHUMBANYIWA D D, et al. Reconstructing habitat history of Coilia nasus from the Hexian section of the Yangtze River in Anhui Province by otolith microchemistry. Acta Hydrobiologica Sinica, 2017a, 41(5): 1054-1061 [李孟孟, 姜涛, KHUMBANYIWA D D, 等. 基于耳石微化学的长江安徽和县江段刀鲚生境履历重建. 水生生物学报, 2017a, 41(5): 1054-1061]
LI M M, JIANG T, CHEN T T, et al. Otolith microchemistry of the estuarine tapertail anchovy Coilia nasus from the Anqing section of the Yangtze River and its significance for migration ecology. Acta Ecologica Sinica, 2017b, 37(8): 2788-2795 [李孟孟, 姜涛, 陈婷婷, 等. 长江安庆江段刀鲚耳石微化学及洄游生态学意义. 生态学报, 2017b, 37(8): 2788-2795]
LIU H, JIANG T, YANG J. Unravelling habitat use of Coilia nasus from the Rokkaku River and Chikugo River estuaries of Japan by otolith strontium and calcium. Acta Oceanologica Sinica, 2018, 37(6): 52-60 DOI:10.1007/s13131-018-1190-8
LIU H B, JIANG T, CHEN X B, et al. Otolith microchemistry of two Triplophysa species in Tongtianhe River. Southwest China Journal of Agricultural Sciences, 2020, 33(9): 2132-2136 [刘洪波, 姜涛, 陈修报, 等. 通天河2种高原鳅星耳石锶和钙的微化学特征. 西南农业学报, 2020, 33(9): 2132-2137]
LIU H B, JIANG T, QIU C, et al. Otolith microchemistry of four fish species from the Changjiang river estuary, China. Oceanologia et Limnologia Sinica, 2018, 49(6): 1358-1364 [刘洪波, 姜涛, 邱晨, 等. 长江口水域四种鱼类的耳石微化学研究. 海洋与湖沼, 2018, 49(6): 1358-1364]
LU M J, LIU H B, JIANG T, et al. Preliminary investigations on otolith microchemistry of Odontamblyopus rubicundus in the Daliao River estuary, China. Marine Fisheries, 2015, 37(4): 310-317 [卢明杰, 刘洪波, 姜涛, 等. 大辽河口红狼牙虎鱼耳石微化学的初步研究. 海洋渔业, 2015, 37(4): 310-317 DOI:10.3969/j.issn.1004-2490.2015.04.003]
MARTIN J, BAREILLE G, BERAIL S, et al. Persistence of a southern Atlantic salmon population: Diversity of natal origins from otolith elemental and Sr isotopic signatures. Canadian Journal of Fisheries and Aquatic Sciences, 2013a, 70(2): 182-197 DOI:10.1139/cjfas-2012-0284
MARTIN J, BAREILLE G, BERAIL S, et al. Spatial and temporal variations in otolith chemistry and relationships with water chemistry: A useful tool to distinguish Atlantic salmon Salmo salar parr from different natal streams. Journal of Fish Biology, 2013b, 82(5): 1556-1581 DOI:10.1111/jfb.12089
MARTIN J, ROUGEMONT Q, DROUINEAU H, et al. Dispersal capacities of anadromous Allis shad population inferred from a coupled genetic and otolith approach. Canadian Journal of Fisheries and Aquatic Sciences, 2015, 72(7): 991-1003 DOI:10.1139/cjfas-2014-0510
MCDOWALL R M. Diadromy, diversity and divergence: implications for speciation processes in fishes. Fish and Fisheries, 2001, 2(3): 278-285 DOI:10.1046/j.1467-2960.2001.00050.x
MELNIK N O, MARKEVICH G N, TAYLOR E B, et al. Evidence for divergence between sympatric stone charr and Dolly Varden along unique environmental gradients in Kamchatka. Journal of Zoological Systematics and Evolutionary Research, 2020, 58(4): 1135-1150 DOI:10.1111/jzs.12367
MÖLLER S, WINKLER HM, KLÜGEL A, et al. Using otolith microchemical analysis to investigate the importance of brackish bays for pike (Esox lucius Linnaeus, 1758) reproduction in the southern Baltic Sea. Ecology of Freshwater Fish, 2019, 28(4): 602-610 DOI:10.1111/eff.12478
MOORE J S, LOEWEN T N, HARRIS L N, et al. Genetic analysis of sympatric migratory ecotypes of Arctic charr Salvelinus alpinus: Alternative mating tactics or reproductively isolated strategies?. Journal of Fish Biology, 2014, 84(1): 145-162 DOI:10.1111/jfb.12262
MORISSETTE O, SIROIS P. Flowing down the river: Influence of hydrology on scale and accuracy of elemental composition classification in a large fluvial ecosystem. Science of the Total Environment, 2021, 760: 143320 DOI:10.1016/j.scitotenv.2020.143320
NAZIR A, KHAN M A. Spatial and temporal variation in otolith chemistry and its relationship with water chemistry: Stock discrimination of Sperata aor. Ecology of Freshwater Fish, 2019, 28(3): 499-511 DOI:10.1111/eff.12471
NELSON T R, POWERS S P. Elemental concentrations of water and otoliths as salinity proxies in a Northern Gulf of Mexico estuary. Estuaries and Coasts, 2020, 43: 843-864 DOI:10.1007/s12237-019-00686-z
NELSON T R, POWERS S P. Validation of species specific otolith chemistry and salinity relationships. Environmental Biology of Fishes, 2019, 102(5): 801-815 DOI:10.1007/s10641-019-00872-9
PAN J, SHEN J Z, SUN L D, et al. Analysis on the otolith core elemental fingerprint of young-of-the-year (YOY) silver carp from Yangtze River and Ganjiang River and its application in stock identification. Resources and Environment in the Yangtze Basin, 2018, 27(12): 2740-2746 [潘静, 沈建忠, 孙林丹, 等. 长江、赣江鲢幼鱼耳石核区元素指纹特征分析及其在群体识别中的应用研究. 长江流域资源与环境, 2018, 27(12): 2740-2746]
PAN X, YE Z, XU B, et al. Population connectivity in a highly migratory fish, Japanese Spanish mackerel (Scomberomorus niphonius), along the Chinese coast, implications from otolith chemistry. Fisheries Research, 2020, 231(5): 105690
PANGLE K L, LUDSIN S A, FRYER B J. Otolith microchemistry as a stock identification tool for freshwater fishes: testing its limits in Lake Erie. Canadian Journal of Fisheries and Aquatic Sciences, 2010, 67(9): 1475-1489 DOI:10.1139/F10-076
PAYNE WYNNE M L, WILSON K A, LIMBURG K E. Retrospective examination of habitat use by blueback herring (Alosa aestivalis) using otolith microchemical methods. Canadian Journal of Fisheries and Aquatic Sciences, 2015, 72(7): 1073-1086 DOI:10.1139/cjfas-2014-0206
PRACHEIL B M, LYONS J, HAMANN E J, et al. Lifelong population connectivity between large rivers and their tributaries: A case study of shovelnose sturgeon from the Mississippi and Wisconsin rivers. Ecology of Freshwater Fish, 2019, 28(1): 20-32 DOI:10.1111/eff.12423
QIU C, JIANG T, CHEN X B, et al. Characteristics of otolith strontium marking and its time lags of larval Cyprinus carpio. Oceanologia et Limnologia Sinica, 2019, 50(4): 903-912 [邱晨, 姜涛, 陈修报, 等. 鲤(Cyprinus carpio) 仔鱼耳石锶(Sr)标记及其时滞特征的研究. 海洋与湖沼, 2019, 50(4): 903-912]
RADIGAN W J, CARLSON A K, KIENTZ J L, et al. Species- and habitat-specific otolith chemistry patterns inform riverine fisheries management. River Research and Applications, 2018, 34(3): 279-287 DOI:10.1002/rra.3248
REIS-SANTOS P, GILLANDERS B M, TANNER S E, et al. Temporal variability in estuarine fish otolith elemental fingerprints: Implications for connectivity assessments. Estuarine, Coastal and Shelf Science, 2012, 112: 216-224 DOI:10.1016/j.ecss.2012.07.027
REIS-SANTOS P, TANNER S E, VASCONCELOS R P, et al. Connectivity between estuarine and coastal fish populations: Contributions of estuaries are not consistent over time. Marine Ecology Progress Series, 2013, 491: 177-186 DOI:10.3354/meps10458
RODGER J R, HONKANEN H M, BRADLEY C R, et al. Genetic structuring across alternative life-history tactics and small spatial scales in brown trout (Salmo trutta). Ecology of Freshwater Fish, 2021, 30(2): 174-183 DOI:10.1111/eff.12573
ROHTLA M, VETEMAA M, TAAL I, et al. Life history of anadromous burbot (Lota lota, Linneaus) in the brackish Baltic Sea inferred from otolith microchemistry. Ecology of Freshwater Fish, 2014, 23(2): 141-148 DOI:10.1111/eff.12057
SALISBURY S J, BOOKER C, MCCRACKEN G R, et al. Genetic divergence among and within Arctic char (Salvelinus alpinus) populations inhabiting landlocked and sea-accessible sites in Labrador, Canada. Canadian Journal of Fisheries and Aquatic Sciences, 2018, 75(8): 1256-1269 DOI:10.1139/cjfas-2017-0163
SCHAFFLER J J, YOUNG S P, HERRINGTON S, et al. Otolith chemistry to determine within-river origins of Alabama Shad in the Apalachicola-Chattahoochee-Flint River basin. Transactions of the American Fisheries Society, 2015, 144(1): 1-10 DOI:10.1080/00028487.2014.954056
SCHOEN L S, STUDENT J J, HOFFMAN J C, et al. Reconstructing fish movements between coastal wetland and nearshore habitats of the Great Lakes. Limnology and Oceanography, 2016, 61(5): 1800-1813 DOI:10.1002/lno.10340
SCHULZ-MIRBACH T, LADICH F, PLATH M, et al. Enigmatic ear stones: What we know about the functional role and evolution of fish otoliths. Biological Reviews, 2019, 94(2): 457-482 DOI:10.1111/brv.12463
SI F, WANG Q L, YU Q H, et al. Use of strontium chloride in otolith marking of Japanese flounder. Progress in Fishery Sciences, 2019, 40(4): 65-72 [司飞, 王青林, 于清海, 等. 基于投喂法的牙鲆耳石锶标记. 渔业科学进展, 2019, 40(4): 65-72]
SOETH M, SPACH HL, DAROS F A, et al. Use of otolith elemental signatures to unravel lifetime movement patterns of Atlantic spadefish, Chaetodipterus faber, in the Southwest Atlantic Ocean. Journal of Sea Research, 2020, 158: 101873 DOI:10.1016/j.seares.2020.101873
SOKTA L, JIANG T, LIU H, et al. Loss of Coilia nasus habitats in Chinese freshwater lakes: An otolith microchemistry assessment. Heliyon, 2020, 6(8): e04571 DOI:10.1016/j.heliyon.2020.e04571
STURROCK A M, TRUEMAN C N, DARNAUDE A M, et al. Can otolith elemental chemistry retrospectively track migrations in fully marine fishes?. Journal of Fish Biology, 2012, 81(2): 766-795 DOI:10.1111/j.1095-8649.2012.03372.x
SWANSON R G, GAGNON J E, MILLER L M, et al. Otolith microchemistry of common carp reflects capture location and differentiates nurseries in an interconnected lake system of the North American midwest. North American Journal of Fisheries Management, 2020, 40(5): 1100-1118 DOI:10.1002/nafm.10474
TADDESE F, REID M R, CLOSS G P. Direct relationship between water and otolith chemistry in juvenile estuarine triplefin Forsterygion nigripenne. Fisheries Research, 2019, 211: 32-39 DOI:10.1016/j.fishres.2018.11.002
TANNER S E, PÉREZ M, PRESA P, et al. Integrating microsatellite DNA markers and otolith geochemistry to assess population structure of European hake (Merluccius merluccius). Estuarine, Coastal and Shelf Science, 2014, 142: 68-75 DOI:10.1016/j.ecss.2014.03.010
TEICHERT N, TABOURET H, LAGARDE R, et al. Site fidelity and movements of an amphidromous goby revealed by otolith multi-elemental signatures along a tropical watershed. Ecology of Freshwater Fish, 2018, 27(3): 834-846 DOI:10.1111/eff.12396
THOMAS O R, GANIO K, ROBERTS B R, et al. Trace element-protein interactions in endolymph from the inner ear of fish: Implications for environmental reconstructions using fish otolith chemistry. Metallomics, 2017, 9(3): 239-249 DOI:10.1039/C6MT00189K
THOMAS O R, SWEARER S E. Otolith biochemistry: A review. Reviews in Fisheries Science and Aquaculture, 2019, 27(4): 458-489 DOI:10.1080/23308249.2019.1627285
THORROLD S R, JONES G P, HELLBERG M E, et al. Quantifying larval retention and connectivity in marine populations with artificial and natural markers. Bulletin of Marine Science, 2002, 70(1): 291-308
TZADIK O E, CURTIS J S, GRANNEMAN J E, et al. Chemical archives in fishes beyond otoliths: A review on the use of other body parts as chronological recorders of microchemical constituents for expanding interpretations of environmental, ecological, and life-history changes. Limnology and Oceanography: Methods, 2017, 15(3): 238-263 DOI:10.1002/lom3.10153
WALSWORTH T E, SCHINDLER D E, GRIFFITHS J R, et al. Diverse juvenile life-history behaviours contribute to the spawning stock of an anadromous fish population. Ecology of Freshwater Fish, 2015, 24(2): 204-213 DOI:10.1111/eff.12135
WALTHER B D, LIMBURG K E. The use of otolith chemistry to characterize diadromous migrations. Journal of Fish Biology, 2012, 81(2): 796-825 DOI:10.1111/j.1095-8649.2012.03371.x
WALTHER B D, NIMS M K. Spatiotemporal variation of trace elements and stable isotopes in subtropical estuaries: I. Freshwater endmembers and mixing curves. Estuaries and Coasts, 2015, 38(3): 754-768 DOI:10.1007/s12237-014-9881-7
WANG S, ZHANG B L, GUO B, et al. Study of the feasibility of identifying the group of released Liza haematocheila by using the strontium marking method in otoliths. Progress in Fishery Sciences, 2022, 43(1): 38-45 [王硕, 张博伦, 郭彪, 等. 耳石锶标记识别放流群体的可行性研究. 渔业科学进展, 2022, 43(1): 38-45]
WANG X, TANG Z. The first large-scale bioavailable Sr isotope map of China and its implication for provenance studies. Earth-Science Reviews, 2020, 210: 103353 DOI:10.1016/j.earscirev.2020.103353
WATSON N M, PRICHARD C G, JONAS J L, et al. Otolith-chemistry-based discrimination of wild- and hatchery-origin steelhead across the Lake Michigan Basin. North American Journal of Fisheries Management, 2018, 38(4): 820-832 DOI:10.1002/nafm.10178
WOODCOCK S H, MUNRO A R, CROOK D A, et al. Incorporation of magnesium into fish otoliths: Determining contribution from water and diet. Geochimica et Cosmochimica Acta, 2012, 94: 12-21 DOI:10.1016/j.gca.2012.07.003
WRIGHT P J, RÉGNIER T, GIBB F M, et al. Identifying stock structuring in the sandeel, Ammodytes marinus, from otolith microchemistry. Fisheries Research, 2018, 199(1): 19-25
WU Z L, CUI X F, TANG F H, et al. Research on genecology of benthic macroalgae. Fishery Information and Strategy, 2018, 33(1): 36-44 [吴祖立, 崔雪森, 唐峰华, 等. 大型底栖海藻种群生态学研究概述. 渔业信息与战略, 2018, 33(1): 36-44]
XUAN Z, JIANG T, LIU H, et al. Mitochondrial DNA and microsatellite analyses reveal strong genetic differentiation between two types of estuarine tapertail anchovies (Coilia) in Yangtze River Basin, China. Hydrobiologia, 2021, 848: 1409-1431 DOI:10.1007/s10750-021-04541-w
XUAN Z Y, JIANG T, LIU H B, et al. Are there still anadromous the estuarine tapertail anchovies Coilia nasus in Dongting Lake?. Acta Hydrobiologica Sinica, 2020, 44(4): 838-843 [轩中亚, 姜涛, 刘洪波, 等. 洞庭湖中是否存在溯河洄游型刀鲚. 水生生物学报, 2020, 44(4): 838-843]
YANG J, ARAI T, LIU H, et al. Reconstructing habitat use of Coilia mystus and Coilia ectenes of the Yangtze River estuary, and of Coilia ectenes of Taihu Lake, based on otolith strontium and calcium. Journal of Fish Biology, 2006, 69(4): 1120-1135 DOI:10.1111/j.1095-8649.2006.01186.x
YANG Q, ZHAO F, SONG C, et al. Habitathistory reconstruction of Coilia mystus from the Yangtze River estuary and its adjacent sea area. Journal of Fishery Sciences of China, 2019, 26(6): 1175-1184 [杨琴, 赵峰, 宋超, 等. 长江口及邻近海域凤鲚生境履历重建. 中国水产科学, 2019, 26(6): 1175-1184]
YU Y, PANG M X, YU X M, et al. Population genetic structure of silver carp from Yangtze River, Ganjiang River and Poyang Lake based on microsatellite markers. Journal of Huazhong Agricultural University, 2016, 35(6): 104-110 [于悦, 庞美霞, 俞小牧, 等. 利用微卫星分子标记分析长江、赣江和鄱阳湖鲢群体遗传结构. 华中农业大学学报, 2016, 35(6): 104-110]
相关知识
Advances in the application of environmental DNA technology in fish ecology
Functional ecology of freshwater fish: research progress and prospects
Advances and prospects in behavioral ecology of aquatic an
白颈长尾雉微卫星多态性的遗传学分析
鱼类生态学(fish ecology).ppt
Preliminary exploration of marine pollution evolutionary ecology: From behavior, adaptation to evolution
An ecosystem perspective on fisheries conservation based on the importance of the big old fish
Characteristics of spatial and temporal ecological niches of the dominant species of fish assemblages in the saltmarsh wetlands of the Yangtze Estuary
Application of RS, GIS and GPS Techniques in Study of Avian Habitat
鱼类生态与资源保护
网址: Advances in the Application of Otolith Microchemistry Analysis in Fish Population Ecology https://m.mcbbbk.com/newsview678360.html
上一篇: 你知道水产科学研究都用哪些水生动 |
下一篇: 最新晚洄游鲑鱼存活策略研究:濒危 |